Joseph Krasil'shchik's lectures on the linear differential operators over commutative algebras and geometry of jet spaces: Difference between revisions

From Geometry of Differential Equations
Jump to navigation Jump to search
Josephk (talk | contribs)
Line 38: Line 38:
*[[Media:At'ja M., Makdonal'd I. Vvedenie v kommutativnuju algebru (Mir, 1972)(ru)(T)(160s).djvu|At'ja M., Makdonal'd I. Vvedenie v kommutativnuju algebru (Mir, 1972)(ru)(T)(160s)]]
*[[Media:At'ja M., Makdonal'd I. Vvedenie v kommutativnuju algebru (Mir, 1972)(ru)(T)(160s).djvu|At'ja M., Makdonal'd I. Vvedenie v kommutativnuju algebru (Mir, 1972)(ru)(T)(160s)]]
*[[Media:Maklejn S. ( Mac Lane S. ) Kategorii dlya rabotayushchego matematika (FML, 2004)(ISBN 5922104004)(ru)(600dpi)(T)(O)(353s) MAct .djvu|Maklejn S. ( Mac Lane S. ) Kategorii dlya rabotayushchego matematika (FML, 2004)(ISBN 5922104004)(ru)(600dpi)(T)(O)(353s)]]
*[[Media:Maklejn S. ( Mac Lane S. ) Kategorii dlya rabotayushchego matematika (FML, 2004)(ISBN 5922104004)(ru)(600dpi)(T)(O)(353s) MAct .djvu|Maklejn S. ( Mac Lane S. ) Kategorii dlya rabotayushchego matematika (FML, 2004)(ISBN 5922104004)(ru)(600dpi)(T)(O)(353s)]]
* Виноградов А.М., Красильщик И.С., Лычагин В.В. ''Введение в геометрию нелинейных дифференциальных уравнений''. М.: Наука. Гл. ред. физ.-мат. лит., 1986. -- 336 с.
* Виноградов А.М., Красильщик И.С. (Ред.)  ''Симметрии и законы сохранения уравнений математической физики''. Серия: XX век. Математика и механика, Факториал, 2005, Вып. 9, Изд. 2. 380 с.
[[Category:Lectures|Krasil'shchik 7984a]]
[[Category:Lectures|Krasil'shchik 7984a]]

Revision as of 09:10, 15 October 2015

Autumn 2015

Lectures takes place at the Independent University of Moscow on Wednesday evenings in room 303 from 17:30 to 19:10

Syllabus

  1. Categories and functors (introduction).
  2. Linear differential operators with values in modules. Main properties.
  3. Derivations.
  4. Representative objects: jets and differential forms.
  5. Differential calculus over commutative algebras.
  6. Schouten-Nijenhuis brackets and related cohomologies. Algebraic model of Hamiltonian formalism.
  7. Frölicher-Nijenhuis brackets and related cohomologies. Algebraic model of nonlinear differential equations.
  8. Geometric realization. Relation between the category of vector bundles over a manifold and the category of projective modules over a commutative ring.
  9. Jets of locally trivial bundles over smooth manifolds. The Cartan distribution.
  10. Symmetries of the Cartan distribution and the Lie-Bäcklund theorem.
  11. Differential equations as geometric objects and their symmetries.
  12. Symmetries of ordinary equations and Lie-Bianchi theorem on the integration by quadratures.

Lecture notes and problems

IUM-lectures-2015-10-01-v3.pdf

Video records of the lectures

Via http://ium.mccme.ru/IUM-video.html, Math-Net.Ru, and YouTube

Recommended literature