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Foreword

These Lecture Notes contain introductory material to algebraic theory
of linear differential operators over commutative algebras. The basics of this
theory were exposed in a short paper by A.M. Vinogradov [11]. Later, a
much more extensive exposition was published in the first chapter of [4]. A
very concise version can also be found in [2].

The initial course, held in Forino (Summer 1998) at the First Italian
Diffiety School, consisted of ten lectures and a number of practical lessons,
but in preparation of the printed version it became clear that a more logical
structure should contain five parts (which are also called lectures below):

• general introduction to commutative algebra (rings, algebras, and
modules) together with main concepts of the category theory —
first two lectures,

• main functors of differential calculus over commutative algebras —
lecture 3,

• their representative objects (jets and differential forms) — lecture
4,

• relations to geometry serving as a bridge to the next course in
geometry of differential equations — the last lecture.

We conclude these notes with a series of exercises which are an essential part
of the main text. A lot of them were analyzed and solved during practical
lessons held by M.M. Vinogradov and V.A. and V.N. Yumaguzhins.

As additional reading, we strongly recommend the books by I. MacDon-
ald and M. Atiyah [7] and S. Lang [6] (commutative algebra), S. MacLane
[8, 9] (category theory and homology), M. Atiyah [1] and D. Husemoller
[3] (vector bundles), and Jet Nestruev [10] (relations between commutative
algebra and geometry of smooth manifolds). An extended discussion of alge-
braic theory of differential calculus together with its relation to differential
equations can be found in [5].

� � �

This text is based on the notes made by Barbara Prinari during the lectures.
She not only fixed the material with great accuracy, but also typeset the
initial TEXfile. Without her help these lectures would hardly be published.

ii



Lecture 1

We start with the maim concept lying in the base of all our future
constructions. This is a notion of a ring.

Let A be an Abelian group. The operation in the group will be denoted
by the symbol “+”:

+: A × A → A, (a, b) �→ a + b.

Suppose there is another operation in A denoted by “dot”:

· : A × A → A, (a, b �→ a · b ≡ ab,

such that one has the distributivity law

a(b + c) = ab + ac (1)

(b + c)a = ba + ca. (2)

for all a, b, c ∈ A. Then one says that A is a ring. If in addition we have
associativity

a(bc) = (ab)c,
then A is called an associative ring. If there is commutativity

ab = ba,

it is called commutative. If there exists an element 1 ∈ A such that

1 · a = a, a · 1 = a

for all a ∈ A, the ring is called unitary and the element 1 is called the unity
of the ring. It is easy to check that if it exists it is unique.

Example 1. The groups Z, R, C are rings with respect to “ordinary”
operations of summation and multiplication of numbers. They are all asso-
ciative, unitary and commutative rings.

Remark 1. The rings R and C possess an additional property: any
element a �= 0 is invertible in them, i.e., there exists an element b ≡ a−1

such that a · a−1 = a−1 · a = 1. Such rings are called fields. Obviously, Z is
not a field.

Example 2. Let V be a vector space over R. The set of all linear
operators acting on V ,

L : V → V,

forms a ring with composition playing the role of the product and it is
denoted by Mat(V ) (since, in a chosen basis, linear operators correspond to
matrices). Then we know that

L1 ◦ (L2 ◦ L3) = (L1 ◦L2) ◦ L3,

1



LECTURE 1 2

i.e., Mat(V ) is an associative ring, but since in general,

L1 ◦ L2 �= L2 ◦ L1

it is not commutative.

Example 3. Let E be a set and consider the set of all subsets of E
denoted by 2E. It can be shown that 2E forms a commutative ring with
respect to the operations

a + b
def= a ∩ b, a + b

def= ā ∩ b) ∪ (a∩ b̄), a, b ∈ 2E ,

where ā
def= E \ a (see Exercise 2).

Example 4. Let C(R) be the set of all continuous functions on the real
line. With respect to the operations

(f + g)(x) def= f(x) + g(x)

(f · g)(x) def= f(x)g(x)

C(R) is a commutative and unitary ring (the same is valid for the set of
smooth functions C∞(R)).

Example 5. Let G be a finite group and A a commutative ring with
unit. Consider the set A[G] consisting of all formal sums

A[G] =
{ ∑

gi∈G

aigi | ai ∈ A
}

.

Then, having two such expressions, we can define their sum and product∑
gi∈G

aigi +
∑
gi∈G

bigi
def=

∑
gi∈G

(ai + bi)gi

∑
gi∈G

aigi ·
∑
gj∈G

bigj
def=

∑
(aibj)gigj.

Then this object becomes a ring which is associative but in general not
commutative (if G is not commutative). A[G] is called the group ring of G
(with coefficients in A).

Example 6. Let V be a vector space and assume that there exists a
multiplication in V denoted by [ , ] such that

(1) [a, b] = −[b, a],
(2) [a, b + c] = [a, b] + [a, c],
(3) [a, [b, c]]+ [c, [a, b]] + [b, [c, a]] = 0.

Then V is called a Lie algebra (it is neither commutative, nor associative).
If A is a ring, a Lie algebra structure can naturally be induced by defining

[a, b] def= ab − ba.

for all a, b ∈ A. It is easy to check that it satisfies properties 1-3. If A is a
commutative ring, then [ , ] will be trivial, i.e., [a, b] = 0 for any a, b ∈ A.



LECTURE 1 3

Example 7. Let V be a vector space over R (or any other field). Then
we can define the tensor product V ⊗V . This is a vector space. In a similar
way we can consider the spaces V ⊗ V ⊗ V = (V ⊗ V ) ⊗ V and so on:

V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

= V ⊗n

which is called the n-th tensor power of V and, if we put V ⊗0 def= R, we can
define

T (V ) =
∑
n≥0

V ⊗n.

Elements of V ⊗n are linear combinations of homogeneous elements v =
v1 ⊗ · · ·⊗ vn, vi ∈ V . If w = w1 ⊗ · · ·⊗ wm ∈ V ⊗m is another homogeneous
element, we define their product v ⊗ w as a simple concatenation:

v ⊗ w
def= v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ vm ∈ V ⊗(n+m).

This operation is extended to arbitrary elements of T (V ) in an obvious
way. Thus T (V ) becomes an associative algebra with respect to the tensor
product. It is called the tensor algebra of the space V . In a sense, all rings
can be obtained from tensor algebras by a regular procedure.

Let now A and B be two rings and consider a map

f : A → B (3)

such that for all a, a′ ∈ A one has

f(a + a′) = f(a) + f(a′) (4)

f(aa′) = f(a)f(a′) (5)

(if A and B are unitary we should add also

f(1A) = 1B , (6)

where 1A are 1B units in A and B respectively.). Then f is called a ring
homomorphism.

The subset of B

im f
def= {b ∈ B | b = f(a), a ∈ A}

is a ring and is called the image of f and the subset of A

ker f
def= {a ∈ A | f(a) = 0}

is a ring too, and is called the kernel of f . If ker f = 0, the homomorphism
f is called a monomorphism. In the case im f = B, it is called an epimor-
phism. If a homomorphism is both epi- and monomorphism, it is called an
isomorphism.

Elements of ker f satisfy the following property: for all a ∈ A and a′ ∈
ker f one has aa′ ∈ ker f and a′a ∈ ker f .

Now let A be a ring and P ⊂ A be a subgroup of A with respect to
addition. If

A · P ⊂ P (7)
(i.e., ap ∈ P for all a ∈ A and p ∈ P ), P is called a left ideal of A. If

P ·A ⊂ P, (8)



LECTURE 1 4

then P is called a right ideal of A. If both (7) and (8) are valid, then P is
called a two-sided ideal. If A is a commutative ring, all ideals are two-sided
ones.

Consider a pair, a ring A and a two-sided ideal P . Then the quotient
group A/P is defined

A/P = {[a] = a mod P | a ∈ A}.
Two elements a, a′ are in the same coset in A/P if and only if a − a′ ∈ P.
Then we can define sum and product of cosets in the natural way

[a] + [b] def= [a + b], [a] · [b] def= [a · b].
If P is a two-sided ideal, these operation are well defined. With respect to
these operations the quotient set is a ring. It is the quotient ring of A with
respect to the two-sided ideal P .

There is a natural epimorphism π : A → A/P taking any element a ∈
A to the corresponding coset [a] ∈ A/P . Thus we have the sequence of
homomorphisms

0 → P
i−→ A

π−→ A/P → 0,

where i is the natural embedding and the kernel of π coincides with the
image of i. This is the so-called short exact sequence of rings.

Example 8. Consider the real line R and the ring of smooth functions
C∞(R). Fix a point x ∈ R and consider the set

µx = {f ∈ C∞(R) | f(x) = 0} (9)

It is easy to check that µx is an ideal. The quotient ring C∞(R)/µx is
isomorphic to R (see Exercise 7). If we choose two points x, y ∈ R the set
µx,y of functions vanishing at both points is an ideal too, and so on.

Example 9. Consider an integer n ∈ Z and the set

nZ = {na | a ∈ Z} (10)

It is an ideal in the ring of integer numbers so we can consider the quotient
ring Zn

def= Z/nZ. This ring consists of n elements

Zn = {[0], [1], . . . , [n − 1]}
which are residues modulo n. In fact, we can prove (see Exercise 9) that
any ideal of Z is of the form (10), that is the following fact is valid:

Proposition 1. A subset P ⊂ Z is an ideal of the ring Z if and only if
there exists n ∈ Z such that P = nZ.

Note that Zn is a field if and only if n is a prime number.

Example 10. Consider the tensor algebra T (V ) (see Example 7) and
the two-sided ideal P− of this algebra generated by the elements of the form
a⊗b−b⊗a, a, b ∈ V = T 1(V ). This means that P− consists of the elements
of the form ∑

i

vi ⊗ (ai ⊗ bi − bi ⊗ ai) ⊗ wi, vi, wi ∈ T (V ).



LECTURE 1 5

Then the quotient ring is commutative and is called the symmetric algebra
of V and is denoted by S(V ). If we chose a basis x1, . . . , xn in V , then any
element of S(V ) can be uniquely represented in the form of finite sum∑

0≤i1,...,in

ai1,...,inxi1
1 . . . xin

n ,

where ai1,...,in are elements of the basic field, while S(V ) is identified with
the ring of polynomials in the variables x1, . . . , xn.

Example 11. Consider another ideal P+ in T (V ) generated by the ele-
ments a⊗b+b⊗a. The corresponding quotient algebra is denoted by

∧
(V )

and is called the external algebra of V . The multiplication in this algebra
is denoted by ∧ :

∧
(V ) ⊗

∧
(V ) →

∧
(V ). Under the natural projection

π : T (V ) →
∧

(V ), the images of elements from V ⊗n constitute elements of
degree n. If v, w ∈

∧
(V ) are elements of degrees n and m respectively, the

one can show that v ∧ w = (−1)nmwv.
If x1, . . . , xn is a basis in V , then any element of

∧
(V ) is uniquely rep-

resented in the form ∑
1≤i1<...ik≤n

ai1,...,inxi1 ∧ · · · ∧ xik .

Example 12. Now let A be the ring of all real polynomials in one
variable A = R[x]. Any ideal P in A is of the form A · f , i.e., is generated
by some polynomial. The quotient ring is a field in this case if and only if
the polynomial f is indecomposable. This field is R, if f = x − λ, λ ∈ R,
and C, if f has complex roots.

The last example, together with Example 9, leads to the following

Definition 1. Let A be a ring and P ⊂ A be its ideal. P is called
maximal, if for any other ideal P ′ the embedding P ′ ⊃ P implies P ′ = P .

Theorem 2. Let A be a commutative and unitary ring. Let P ⊂ A be
an ideal. Then the quotient ring A/P is a field if and only if P is a maximal
ideal. (For the proof see Exercise 15).

Let A be a commutative ring with unity (from now on we shall always
consider such rings only) and let a, b ∈ A. We say that a �= 0 is a zero
divisor, if

ab = 0 (11)
for some b �= 0.

Definition 2. An ideal P ⊂ A is called a prime ideal, if ab ∈ P implies
that either a ∈ P or b ∈ P .

Proposition 3. An ideal P ⊂ A is prime if and only if the quotient
ring A/P possesses no zero divisors (see Exercise 16).

Proposition 4. Any maximal ideal P ⊂ A is a prime ideal (see Exercise
17).

Proposition 5. Any ideal of A is contained in a maximal ideal (for the
proof Exercise 18).
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Example 13. Let A be the ring of polynomials over R in three variables,
A = R[x, y, z]. Consider the ideals

P1 = {x − λ}, P2 = {x− λ, y − µ}, P3 = {x − λ, y − µ, z − ν}.

Then both P1 and P2 are prime ideals, P3 is a maximal and consequently a
prime ideal too.

Let us now consider two rings A and B and a ring homomorphism
ϕ : A → B. Then we can define an action of A over B in this way: for
any a ∈ A and b ∈ B we set

a ◦ b
def= ϕ(a)b. (12)

Usually we shall omit the “◦” symbol and denote the action of a over b
simply as ab.

It is easy to check, using (1), (2) and (4), (5), that this action possesses
the following properties

a ◦ (b + b′) = a ◦ b + a ◦ b′ (13)

(a ◦ b)b′ = a ◦ (bb′) (14)

(aa′) ◦ b = a ◦ b + a′ ◦ b (15)

(a + a′) ◦ b = a ◦ b + a′ ◦ b (16)

and, if A is a unitary ring, one has also

1A ◦ b = b. (17)

In this case, B is called an algebra over A or an A-algebra.

Example 14. The ring of smooth functions C∞(Rn) is an algebra over
the ring R.

Example 15. The polynomial ring k[x1, . . . , xn] is an algebra over the
field k.

Take now instead of B just an Abelian group and let us denoted by P .
Let us define an action of A over P in a reasonable way. “Reasonable” in
this context means that for all a ∈ A and p ∈ P one has a correspondence

(a, p) �→ ap ∈ P

and this correspondence possesses the following properties: for all a, a′ ∈ A
and p, q ∈ P one has

a(p + q) = ap + aq (18)

(a + a′)p = ap + a′p (19)

(a + a′)p = ap + a′p. (20)

Then we say that P is an A-module. We shall always assume the modules
under consideration to be unitary, which means that

1Ap = p. (21)

Example 16. Any vector space over a field k is a module over this field.
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Example 17. Consider the algebra C∞(R) and the set of vector valued
functions A = {(f1, . . . , fs) | fi ∈ C∞(R)}. We can multiply such functions
by any function g ∈ C∞(R) in a natural way

g(f1, . . . , fs)
def= (gf1, . . . , gfs)

and add them to each other as vectors. So A is a C∞(R)-module, that is a
module over the ring of smooth functions.

Example 18. Let V be a real vector space (i.e., a space over R) and
ϕ : V → V be a linear operator. Consider the ring of all real polynomials in
one variable, R[x]. If p ∈ R[x],

p = a0 + a1x + · · ·+ anxn, a0, . . . , an ∈ R,

then we can define the action of this polynomial over V by

p(v) def= (a0 + a1ϕ + · · ·+ anϕn) (v)

that is
p(v) = a0v + a1ϕ(v) + · · ·+ anϕn(v).

It is easy to check that V is a module over the ring R[x] with respect to this
action.

Example 19. Let now G be a finite group and V be a vector space over
a field k. We say that G is represented in V , if a group homomorphism of
G to the group of endomorphisms of V is given, that is for any g ∈ G one
has ϕ(g) : V → V satisfying

ϕ(gg′) = ϕ(g) ◦ ϕ(g′).

To say that G is represented in V is the same as to say that we have a
k[G]-module structure on V (see Example 5).

Let A be a ring and P and Q be two A-modules. A mapping f : P → Q
is called an A-homomorphism if for any elements p, p′ ∈ P and a ∈ A one
has

f(p + p′) = f(p) + f(p′) (22)

f(ap) = af(p). (23)

If A is a field and P , Q are vector spaces over A, an A-homomorphism
is just a linear operator. The set of all A-homomorphisms is denoted by
HomA(P, Q). If f ∈ HomA(P, Q) and a ∈ A, we can define an action of a
over f as

(af)(p) def= af(p) (24)
and the sum of two homomorphisms by

(f + f ′(p) def= f(p) + f ′(p).

This definition introduces an A-module structure in HomA(P, Q). The ring
A itself is an A-module, so we can consider the module HomA(A, P ) It is
easy to check that

HomA(A, P ) � P. (25)

Let us also introduce the module P ∗ def= HomA(P, A) which is called the dual
or adjoint module of P .



Lecture 2

At the end of the previous lecture we introduced the notion of a homo-
morphism between A-modules and showed that the set HomA(P, Q) is an
A-module as well.

Let us now consider three A-modules P , Q, and R and two A-module
homomorphisms f , g

P
f−→ Q

g−→ R.

Then we can consider the composition h = g ◦f : P → R. It is easy to check
that h is an A-homomorphism from P to R. A way to express that h is the
composition of f and g is to say that the diagram

P
f → Q

��
�

�
�

�

g

R

h

↓

is commutative. We shall often use the diagram language to make exposition
more clear and intuitive.

Let us consider a more complicated situation: namely let A be a ring
and B be an A-algebra. Let ϕ : A → B be the corresponding homomorphism
and P , Q be B-modules. Then they are A-modules as well: the A-module
structure is defined by

ap
def= ϕ(a)p, a ∈ A, p ∈ P.

Example 20. Obviously, the field of complex numbers C is an R-algebra.
Therefore any complex vector space can be considered as a real vector space
using the previous definition with ϕ : R ↪→ C being the standard embedding.

So, P and Q are both A- and B-modules and, consequently, HomA(P, Q)
is an A-module while HomB(P, Q) is both a B-module and an A-module as
well according to the previous definition. But we can define also a B-module
structure in HomA(P, Q): given f ∈ HomA(P, Q) and b ∈ B, we can set

(bf)(p) def= bf(p), p ∈ P (26)

and we can also introduce a different action, which we shall denote by +:

(b+f)(p) def= f(bp). (27)

8
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It is easy to check that both bf and b+f are A-homomorphism from P
to Q and they are different since f is an A-homomorphism and not a B-
homomorphism.

Example 21. Let B = R[x]. Then B an R-algebra and is a module
over itself. As for any ring, HomB(B, B) = B. On the other hand, elements
of HomR(B, B) are uniquely determined by images of 1, x, x2, . . . and are
arbitrary infinite-dimensional R-matrices.

Thus, two module structures exist in HomA(P, Q) defined by the actions
(26) and (27), and these structures commute in the following sense:

b1(b+
2 f) = b+

2 (b1f).

for any b1, b2 ∈ B and f ∈ HomA(P, Q). In this case we say that a bimodule
structure is given.

Now let A be a ring and P, Q two A-modules. We say that a mapping f ∈
HomA(P, Q) is an epimorphism, if it is surjection, that is for any q ∈ Q there
exists p ∈ P such that f(p) = q. In this case we also say that the sequence

P
f−→ Q → 0 is exact. We say that f is an embedding (or monomorphism),

if f(p) = 0 implies p = 0 and represent this fact by the exact sequence

0 → P
f−→ Q. Epimorphic embeddings are called isomorphisms.

If P = Q, elements of module HomA(P, P ) are called endomorphisms
and the notation

EndA P
def= HomA(P, P )

is used. Note that EndA P is an associative A-algebra with respect to com-
position.

Now let P be an A-module and P ′ ⊂ P a subset of P . We say that P ′

is a submodule in P if

p1 + p2 ∈ P ′, ap ∈ P ′

for all p, p1, p2 ∈ P ′ and a ∈ A.

Example 22. Let P = A. Then submodules of A are just its ideals.

Let P ′ be a submodule of P . Then p ∼ q ⇔ p− q ∈ P ′ is an equivalence
relation and we can consider the quotient P/P ′. Evidently, the operations

(p + P ′) + (q + P ′) def= (p + q) + P ′

a(p + P ′) def= ap + P ′

determine a well-defined module structure in P/P ′ and one has a natural
epimorphism P → P/P ′, p �→ p + P ′.

Let P , Q be A-modules and f : P → Q be an A-module homomorphism.
Consider the sets

ker f = {p ∈ P | f(p) = 0}
im f = {q ∈ Q | q = f(p) for some p ∈ P} .

Both are submodules (of P and Q respectively) called kernel and image of f .
We can consider the quotient P/ kerf and it is easy to check that P/ kerf
is isomorphic to im f .
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Now given two modules P and Q we can consider their Cartesian product

P × Q = {(p, q) | p ∈ P, q ∈ Q}
and introduce an A-module structure to it by

(p, q) + (p′, q′) def= (p + p′, q + q′)

a(p, q) def= (ap, aq).

The module obtained is denoted by P ⊕ Q and is called the direct sum
of P and Q. The simplest A-module is A itself, so we can construct the
module

An = A ⊕ A ⊕ · · · ⊕A︸ ︷︷ ︸
n times

.

which is called a free module with n generators (or of rank n). In An we can
consider the free generators

e1 = (1A, 0, . . . , 0)

e2 = (0, 1A, . . . , 0)
. . . . . . . . . . . . . . . . .

en = (0, 0, . . . , 1A)

and any element a ∈ An can be uniquely written in the form

a = a1e1 + · · ·+ anen.

The following result explains why the modules and generators above are
called free.

Proposition 6. Let P be an arbitrary A-module and An be the free
module of rank n with free generators e1, . . . , en. Then for any elements
p1, . . . , pn ∈ P there exists a unique homomorphism f : An → P such that
f(ei) = pi, i = 1, . . . , n.

For an arbitrary A-module P , we say that elements p1, . . . , pn are gener-
ators of p, if any element p ∈ P can be represented as a linear combination
p =

∑n
i=1 aipi, ai ∈ A (of course, this representation may not be unique).

From Proposition 6 we obtain the following

Corollary 7. Any A-module P with n generators can be represented
as a quotient of the free module An of rank n.

Thus, given a module P , we have P � An/R for some submodule R ⊂
An. If r1, . . . , rk are generators of R, we say that P is described by relations
r1 = 0, . . . , rk = 0.

Example 23. The module Zm is the quotient of Z described by the
relation m = 0.

Now let A be a commutative ring and P , Q, R be A-modules. Consider
the set P × Q and a mapping f : P × Q → R. We say that f is bilinear if

(1) f(ap, q) = af(p, q),
(2) f(p, aq) = af(p, q),
(3) f(p + p′, q) = f(p, q) + f(p′, q),
(4) f(p, q + q′) = f(p, q) + f(p, q′).
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for any a ∈ A, p, p′ ∈ P , q, q′ ∈ Q. In other words, the mappings fp : q �→
f(p, q) and fq : p �→ f(p, q) are A-homomorphisms from Q to R and from P
to R respectively.

Let now T be an A-module and t : P ×Q → T be a bilinear map. We say
that T is the tensor product of P and Q if for any bilinear map f : P×Q → R
to an arbitrary A-module R, there exists a unique homomorphism f ′ such
that the diagram

P × Q
f → R

��
�

�
�

�

f ′

T

t

↓
(28)

is commutative.
The tensor product T of P and Q is denoted by P ⊗A Q. If it exists, it

is unique up to isomorphisms.
Consider the free module generated by the formal expressions p⊗q with

p ∈ P and q ∈ Q and denote it by L(P, Q). Let R ⊂ L(P, Q) be the
submodule generated by the elements

(p + p′) ⊗ q − p ⊗ q − p′ ⊗ q

p ⊗ (q + q′)− p ⊗ q − p ⊗ q′

ap ⊗ q − p ⊗ aq.

One can show that the quotient module L(P, Q)/R satisfies property (28)
and thus we have L(P, Q)/R � P ⊗A Q. This proves existence of tensor
product. Its main properties are formulated in the following

Proposition 8. For any A-modules the following isomorphisms take
place:

(1) P ⊗A (Q ⊗A R) � (P ⊗A Q) ⊗A R,
(2) A ⊗A Q � Q ⊗A A � Q,
(3) P ⊗A (Q ⊕ R) � P ⊗A Q ⊕ P ⊗A R,
(4) (P ⊕ Q) ⊗A R � P ⊗A R ⊕ Q ⊗A R,
(5) HomA(P ⊗A Q, R) � HomA(P, HomA(Q, R)).

Now we shall introduce an important class of modules.

Definition 3. An A-module P is called a projective if for any A-modules
M and M ′, any homomorphism f ∈ HomA(P, M ′), and any epimorphism
h : M → M ′ there exists a homomorphism f ′ ∈ HomA(P, M) such that the
diagram

P

��
�

�
�

�
f ′

M
h → M ′

f

↓
→ 0

is commutative.
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Theorem 9. An A-module P is projective if and only if there exists a
free module F and a submodule P ′ ⊂ F such that F = P ⊕ P ′

In particular, all free modules are projective, but not vice versa.
Now let us consider a commutative ring A and the set of all A-modules,

which we denote by Mod(A). We can define some nice operations in this
set; for example,

P, Q ∈ Mod(A) =⇒ HomA(P, Q) ∈ Mod(A).

What are the properties of this correspondence? First fix P and consider
the correspondence HomA(P, ·) : Q �→ HomA(P, Q). Then you have a corre-
spondence from Mod(A) to itself

Q ∈ Mod(A) =⇒ HomA(P, Q) ∈ Mod(A).

Now, consider another module Q′ and a homomorphism g ∈ HomA(Q, Q′).
Then to any f ∈ HomA(P, Q) we can put into correspondence the composi-
tion g ◦ f ∈ HomA(P, Q′). Denoting g ◦ f by HomA(P, g)(f), we obtain the
mapping

HomA(P, g) : HomA(P, Q) → HomA(P, Q′).
So, for a fixed P , HomA(P, ·) is a correspondence taking A-modules to A-
modules and A-homomorphisms to A-homomorphisms. Moreover, if we have
a sequence

Q
g−→ Q′ g′−→ Q′′,

then it can be easily seen that

HomA(P, g′ ◦ g) = HomA(P, g′) ◦ HomA(P, g) (29)

and
HomA(P, idQ) = idHomA(P,Q). (30)

Let us consider another example of a similar nature. Fix a module P
construct the correspondence

TP : Mod(A) → Mod(A)

by setting TP (Q) = P ⊗A Q. If we have a homomorphism g ∈ HomA(Q, Q′),
we can define TP (g) : P ⊗A Q → P ⊗A Q′ by

TP (g)(p⊗ q) def= p ⊗ g(q).

Similar to the previous case, we have TP (g′ ◦ g) = TP (g′) ◦ TP (g), if the
composition g′ ◦ g is defined, and TP (idQ) = idP⊗Q.

Let us now fix a module Q and consider the correspondence

HomA(·, Q) : Mod(A) → Mod(A)

taking a module P to the module HomA(P, Q). Then for any homomorphism
f ∈ HomA(P ′, P ) we have the homomorphism HomA(f, Q) : HomA(P, Q) →
HomA(P ′, Q) defined by HomA(f, Q)(g) def= f ◦ g, where g : P → Q. In this
case we have

HomA(f ◦ f ′, Q) = HomA(f ′, Q) ◦HomA(f, Q), (31)

whenever the composition f ◦ f ′ is defined. Note that the order in the
right-hand side is reversed with respect to (29).
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Let us generalize these constructions. Consider “something” (a sort of
Universum) denoted by C, which consists of the collection O of some objects
such that, given a pair of objects O1, O2 ∈ O, we can put it into correspon-
dence with a set Mor(O1, O2), whose elements are called morphisms from
O1 to O2. Suppose that the correspondence between the pair O1, O2 and
this set Mor(O1, O2) satisfies the following properties:

(1) For any object O there exists a morphism idO ∈ Mor(O, O);
(2) Given a triple O1, O2, O3, one has the composition mapping

◦ : Mor(O1, O2) ×Mor(O2, O3) → Mor(O1, O3)

such that:
(a) For any ϕ ∈ Mor(O1, O2) one has idO2 ◦ϕ = ϕ and ϕ ◦ idO1 =

ϕ;
(b) If ϕ ∈ Mor(O1, O2), ψ ∈ Mor(O2, O3), and ζ ∈ Mor(O3, O4),

the associative rule holds: ζ ◦ (ψ ◦ ϕ) = (ζ ◦ ψ) ◦ ϕ.
Then C is called a category. Let us consider some examples.

Example 24. Consider the category whose objects are sets. If we have
two sets S1 and S2, and we define

Mor(S1, S2) = Maps(S1, S2),

i.e., objects are mappings of sets. We have a category of sets.

Example 25. Consider all finite groups as objects. If we have two finite
groups G1 and G2 and define the set of morphisms as the set of all group
homomorphisms between G1 and G2 we get a category. The same can be
done with Abelian groups or with all groups.

Example 26. Consider all modules over a commutative ring A and, as
above, denote them by Mod(A). In this case

Mor(P1, P2) = HomA(P1, P2).

Example 27. In the case of vector spaces over a field k, morphisms will
be linear maps between these spaces.

How to establish relations between different categories? Let C1 and C2

be two categories. Consider a correspondence

F : C1 =⇒ C2 (32)

taking any object of C1 to an object of C2,

O �→ F (O)

and if we have a pair of objects O and O′ in C1, then F takes

Mor(O, O′) =⇒ Mor(F (O), F (O′)).

Assume that three objects of C1 are given, O1, O2, O3, together with two
morphisms ϕ ∈ Mor(O1, O2) and ψ ∈ Mor(O2, O3). Then F is called a
covariant functor between C1 and C2, if for all morphisms ϕ, ψ

F (ϕ ◦ ψ) = F (ϕ) ◦ F (ψ).

whenever the composition ϕ ◦ ψ is defined. If F takes

Mor(O, O′) =⇒ Mor(F (O′), F (O)).
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and
F (ϕ ◦ ψ) = F (ψ) ◦ F (ϕ),

then it is called is called a contravariant functor.

Example 28. The correspondence TP : Q �→ P ⊗A Q is a covariant
functor from the category Mod(A) to itself.

Example 29. For a fixed P , the correspondence Q �→ HomA(P, Q) is
also a covariant functor from the category Mod(A) to itself.

Example 30. If we fix Q, the correspondence P �→ HomA(P, Q) is a
contravariant functor.

Example 31. Let G be a finite group. Consider the normal subgroup
generated by g1g2g

−1
1 g−1

2 with g1, g2 ∈ G, and denoted by [G, G]:

[G, G] = {g1g2g
−1
1 g−1

2 } ⊂ G.

Then G/[G, G] is an Abelian group while the correspondence

G �→ G/[G, G]

is a functor from the category of finite groups to the category of Abelian
groups.

Example 32. Smooth manifolds make a category with smooth maps
playing the role of morphisms. Then the correspondence M �→ C∞(M) is a
contravariant functor from this category to the category of R-algebras.

Let now C1 and C2 be two categories and F, F : C1 =⇒ C2 be two
(say, covariant) functors. Assume that for any object O of C1 a morphism
TO : F (O) → G(O) is given. Then the correspondence O �→ TO is called a
natural transformation of functors F and G if the diagram

F (O)
F (ϕ)→ F (O′)

G(O)

TO

↓
G(ϕ)→ G(O′)

TO′

↓

is commutative for all objects O, O′ and all morphisms ϕ ∈ Mor(O, O′).
For example, the isomorphism HomA(P ⊗A Q, R) � HomA(P, Hom(Q, R))
gives a natural transformation of the functors R �→ HomA(P ⊗A Q, R) and
R �→ HomA(P, Hom(Q, R)). We shall see other examples of natural trans-
formations in next lectures.
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Using a geometrical analogy now, we shall start to construct differential
calculus in the category Mod(A).

Let U be a domain in Rn. Let us fix a point x ∈ U ; a tangent vector ξx

in x is a map
ξx : C∞(U) → R

which is linear and such that for all f, g ∈ C∞(U) one has

ξx(fg) = ξx(f)g(x) + f(x)ξx(g). (33)

Suppose we have a tangent vector at any point of the domain. Then we can
consider the mapping

ξ : C∞(U) → C∞(U)

such that ξ(f)(x) def= ξx(f) smoothly depending on x. Then (33) acquires
the from

ξ(fg) = ξ(f)g + fξ(g). (34)

It is easy to check that for all f, g ∈ C∞(U) and α ∈ R one has also
(1) ξ(fg) = ξ(f)g + fξ(g),
(2) ξ(αf) = αξ(f).

Thus, smooth family of tangent vectors is a R-linear map from the ring of
smooth functions to itself that satisfies the Leibniz rule (34).

Now let us try to generalize this concept. Let K be a commutative
unitary ring and A be a K-algebra. A map X : A → A is called a derivation,
if it is K-linear and satisfies the Leibniz rule, that is

(1) X(κa) = κX(a);
(2) X(a + b) = X(a) + X(b);
(3) X(ab) = X(a)b + bX(a).

for all a, b ∈ A and Wκ ∈ K. The set of all derivations will be denoted by
D(A). The classical geometric case corresponds to K = R and A = C∞(Rn).

For any X, Y ∈ D(A) and a, b ∈ A, we can set

(X + Y )(a) def= X(a) + Y (a)

(aX)(b) def= aX(b),

and it is easy to check that X +Y and aX are derivations as well. So the set
of derivations D(A) in an A-module. In fact it is more than just a module.
For any X, Y ∈ D(A) we can consider the compositions X ◦ Y and Y ◦ X
and define

[X, Y ] def= X ◦ Y − Y ◦ X. (35)

15
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It is easy to check that it is a derivation; it is called the Lie bracket of X
and Y . One can show that for all X, Y, Z ∈ D(A) and κ ∈ K the following
identities hold

(1) [X, Y ] + [Y, X ] = 0;
(2) [X + Y, Z] = [X, Z] + [Y, Z];
(3) [κX, Y ] = κ[X, Y ];
(4) [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z, X ]] = 0.

Thus, D(A) is a Lie algebra over K.
Consider two domains W ⊂ Rn and V ⊂ Rm and let F : W → V be

a smooth mapping. Then this mapping generates a ring homomorphism
F ∗ : C∞(V ) → C∞(W ) which is defined by

(F ∗(f))(b) = f(F (b)). (36)

So every function f on V is pulled back to a smooth function on W in this
way. Note that F ∗ is also a homomorphism of R-algebras.

We can generalize this concept. Let us denote A = C∞(V ) and B =
C∞(W ). Having a mapping F : W → V , we can construct F ∗ and so,
having a derivation ξ in A we can define a mapping ξ : A → B such that for
all f ∈ A one has

ξ(f) def= F ∗(ξ(f)).

One can check that ξ satisfies the Leibniz rule, that is

ξ(fg) = ξ(f)F ∗(g) + F ∗(f)ξ(g)

for any f, g ∈ A (action by F ∗ on B determines an A-algebra structure in
B).

Let A be a K-algebra and P be an A-module. We can define

D(P ) = {f ∈ HomK(A, P ) | f(ab) = af(b) + bf(a) ∀a, b ∈ A}. (37)

If we have such an f ∈ D(P ) and a ∈ A, then

(af)(b) def= a(f(b))

and it is easy to check that af ∈ D(P ), so D(P ) is an A-module. However
it is not a Lie algebra, since there is no natural way to define a commutator.

On the other hand, if we have two A-modules P, Q, an A-module ho-
momorphism ϕ : P → Q and a derivation with values in P , we can consider
the composition D(ϕ) def= ϕ ◦ f : A → Q. It is K-linear and it satisfies
the same identities, so ϕ ◦ f ∈ D(Q). Then to any module P we put into
correspondence the module D(P ). Moreover, having two homomorphisms

P
ϕ−→ Q

ψ−→ R, it results that

D(ψ ◦ ϕ) = D(ψ) ◦D(ϕ),

so D(·) a covariant functor. We say that elements of D(P ) are P -valued
derivation of A.

Fix a commutative ring A which is an algebra over a ring K. Let P be
an A-module and X be a derivation, that is X ∈ HomK(A, P ) and

X(ab) = aX(b) + bX(a). (38)
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for any a, b ∈ A. Any element X of D(P ) can be multiplied by an element
of A in two ways, from the left, that is

(aX)(b) def= aX(b) (39)

or from the right

(a+X)(b) def= X(ab). (40)
Now, (a+X)(b) = X(ab) = aX(b) + X(a)b = (aX)(b) + X(a)b, so we can
write

(a+X − aX)(b) = X(a)b
and this suggests a way to define a commutator

[a, X ](b) def= X(a)b. (41)

Now let a be fixed; then if we have another element a, we can easily check
that for all b one has [a, [a, X ]](b) = 0, that is

[a, [a, X ]] = 0. (42)

Let now X : A → P be such that [a, [a, X ]] = 0 for all a, a ∈ A. Then the
difference X−X(1) satisfies (38) provided X itself satisfies (42). Then, if we
put X −X(1) = X, then X = X +f , where X is a derivation and f = X(1)
is a constant. We conclude that any element satisfying (42) is the sum of
a derivation and a constant. Standard first order differential operators (on
R) are of this form,

∆ = g
∂

∂x
+ f.

Let A be a K-algebra and P, Q be A-modules. Then we can consider
the bimodule HomK(P, Q). Let ∆ ∈ HomK(P, Q) and consider

[a, ∆] = a+∆ − ∆a = ∆a − a∆.

This difference belongs to HomK(P, Q) so we can take a ∈ A and consider
[a, [a, ∆]]. We say that ∆ is a first order differential operator acting from P
to Q if for all a, a ∈ A one has

[a, [a, ∆]] = 0.

Consider two A-modules P, Q and a homomorphism ∆ ∈ HomK(P, Q).
We say that ∆ is a differential operator of order ≤ k if for all a0, a1, . . . , ak ∈
A it results

[a0, [a1, . . . [ak, ∆] . . . ]] = 0.

Let us denote the set of all such maps as D̃iffk(P, Q), k ∈ N. What are the
structures living in this set? If we have two differential operators ∆,∇ ∈
D̃iffk(P, Q), then it is easy to check that ∆+∇ ∈ D̃iffk(P, Q), so D̃iffk(P, Q)
is an Abelian group. Moreover, given a ∈ A, it results that

[ak, a∆] = a[ak, ∆]

and so D̃iffk(P, Q) is also an A-module, which will be denoted by Diffk(P, Q).
If we consider the right multiplication, we get the second module structure
denoted by Diff+k (P, Q), and finally Diff(+)

k (P, Q) will denote the bimodule
structure.
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Consider three modules and two linear maps P
∆−→ Q

∇−→ R. If you take
a ∈ A and consider [a,∇◦ ∆], you will have

[a,∇◦ ∆] = [a,∇] ◦ ∆ + ∇ ◦ [a, ∆].

Let ∆ be a K-linear map. You can prove by induction or directly from the
definition that

[a, [a, . . . [a, ∆] . . . ]]︸ ︷︷ ︸
k+1 times

=
k+1∑
i=0

(−1)k+1−i

(
k + 1

i

)
ai∇ak+1−i.

Consider f ∈ C∞(R) and x0 ∈ R. Then that f can be represented in the
form

f(x) = f(x0) + (x − x0)f ′(x0) + · · ·+ (x − x0)k

k!
f (k)(x0) + (x − x0)k+1g(x)

with g ∈ C∞(R). Now let ∆: C∞(R) → C∞(R) satisfy the algebraic defini-
tion of a differential operator of order ≤ k and apply ∆ to the function f .
Because of linearity, we have

∆(f) = f(x0)∆(1) + f ′(x0)∆(x − x0) + · · ·

· · ·+ f (k)(x0)
k!

∆
[
(x− x0)k

]
+ ∆

[
(x− x0)k+1g(x)

]
.

If we compute this expression at x = x0 it suffices to notice that the last term
in the right-hand side vanishes and so the value of ∆(f) at the point x0 is
determined by the set of coefficients ∆0 = ∆(1), ∆1 = ∆(x− x0), . . . , ∆k =
∆(x − x0)k and

∆ = ∆0 + ∆1
d

dx
+ · · ·+ ∆k

k!
dk

dxk
.

A similar proof is valid for arbitrary differential operators ∆: C∞(Rn) →
C∞(Rn). So from the algebraic definition in the case of smooth functions
we obtain the usual expression and, vice versa, if we have

∆ =
∑

∆σ
∂σ

∂xσ
,

where ∆σ ∈ C∞(R), this ∆ satisfies our algebraic definition of a differential
operator. Thus we can think of differential operators as of purely algebraic
objects.

Consider the bimodule Diff(+)
k (P, Q). If we have a differential operator

of order k, i.e.,
[a0, [a1, . . . [ak, ∆] . . . ]] = 0,

then we can add an arbitrary a′ and obtain

[a′, [a0, [a1, . . . [ak, ∆] . . . ]]] = 0,

so ∆ is a differential operator of order k + 1 as well and consequently

Diff(+)
k (P, Q) ↪→ Diff(+)

k+1(P, Q).

Operators of zero order are those which satisfy [a0, ∆] = 0 for all a0 ∈ A,
that is a0∆ = ∆a0 and so elements of Diff0(P, Q) are just A-homomorphisms
and the two module structures coincide in this case.
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Having the sequence of embeddings

HomA(P, Q) = Diff0(P, Q) ↪→ . . . ↪→ Diff(+)
k (P, Q) ↪→ Diff(+)

k+1(P, Q) ↪→ · · · ,

we can define a new object

Diff(+)
∗ (P, Q) def=

⋃
k≥0

Diff(+)
k (P, Q).

It is a bimodule consisting of all differential operators of any finite order.
Let us fix a module P . Then, having a homomorphism f : Q → Q′ and an

operator ∆ ∈ Diff(+)
k (P, Q), we can consider the composition P

∆−→ Q
f−→ Q′

and associate to any differential operator ∆ ∈ Diff(+)
k (P, Q) the operator

f ◦ ∆ ∈ Diff(+)
k (P, Q′). This map, which depends of P and on f , will be

denoted by

Diff(+)
k (P, f) : ∆ ∈ Diff(+)

k (P, Q) �→ f ◦ ∆ ∈ Diff(+)
k (P, Q′),

and it defines a functor from the category of A-modules to the category of
A-bimodules.

Fix Q now. Then, given a homomorphism f : P → P ′, to any operator
∆ ∈ Diff(+)

k (P ′, Q) we can associate the operator P
f−→ P ′ ∆−→ Q. If P

f−→
P ′ g−→ P ′′ are two homomorphisms, then

Diff(+)
k (f ◦ g, Q) = Diff(+)

k (g, Q) ◦ Diff(+)
k (f, Q)

and so it is a contravariant functor.
Consider the modules Diffk(P, Q) and Diff+k (P, Q). They are isomorphic

as Abelian groups, but they are different as far as module structures are
concerned. Then we can consider the identical mappings

Diffk(P, Q) id+

−−→ Diff+k (P, Q)

and

Diffk(P, Q)
id+←−− Diff+k (P, Q).

The mappings id+ and id+ are differential operators of order ≤ k, but there
compositions id+ ◦ id+ and id+ ◦ id+ are operators of zero order (identical
homomorphisms).

What happens in general if we consider the compositions of differential
operators P

∆−→ Q
∇−→ R with ∆ ∈ Diff(+)

k (P, Q) and ∇ ∈ Diff(+)
l (Q, R)?

Generally speaking, ∇ ◦ ∆ ∈ HomK(P, R). Let us prove that it is a differ-
ential operator. To this end, take a ∈ A and consider the identity

[a,∇◦ ∆] = [a,∇] ◦ ∆ + ∇ ◦ [a, ∆].

Hence, for m = k + l one has

[a0, [a1, . . . [am,∇◦ ∆] . . . ]]

=
∑

[ai0, [ai1, . . . [ais,∇] . . . ]] ◦ [aj0, [aj1, . . . [ajt , ∆] . . . ]].

The whole number of a’s is k+ l+1; then either in the first term the number
of commutators is ≥ l or in the second one it is ≥ k. In any case, one of the
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two components vanishes and hence ∇ ◦ ∆ ∈ Diff(+)
k+l(P, R), just as in the

standard case.
Consider a particular case P = Q. Taking the composition of two dif-

ferential operators from P to itself, we obtain a new differential operator
from P to itself. Composition is obviously associative so Diff(+)

∗ (P, P ) is an
associative algebra with respect to composition (but not commutative!).

To deal with differential operators from A (as A-module over itself) to
an A-module Q, we shall use the notation

Diff(+)
k (Q) def= Diff(+)

k (A, Q).

Derivations with values in Q are first order differential operators so we have
D(Q) ↪→ Diff(+)

1 (Q). Note that the embedding D(Q) ↪→ Diff+1 (Q) ia a first
order monomorphic differential operator, while D(Q) ↪→ Diff1(Q) is an A-
module monomorphism.

Let us consider the sequence 0 → D(Q) → Diff1(Q). If we take the
quotient of Diff1(Q) by the image, we obtain Q (we are killing the differential
part), so we have the exact sequence of homomorphisms

0 → D(Q) → Diff1(Q) → Q → 0. (43)

On the other hand, Diff(+)
0 (Q) ↪→ Diff(+)

1 (Q) and, since we established that
Diff(+)

0 (Q) ≡ Diff(+)
0 (A, Q) = HomA(A, Q) = Q, we have the exact sequence

of differential operators

0 → Q → Diff+1 (Q) → D(Q) → 0. (44)

From these two sequences, (43) and (44), we get two important theories:
Spencer cohomology and algebraic model of Hamiltonian mechanics.
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In the previous lecture we established that

Q �→ Diff(+)
l (P, Q), (45)

P �→ Diff(+)
l (P, Q) (46)

are covariant and contravariant functors from Mod(A) to the category of
A-bimodules.

Let us fix the second module structure and consider the mapping

Dl : Diff+l Q → Q

defined by

Dl(∆) def= ∆(1), ∆ ∈ Diff+l Q. (47)

Then Dl is a differential operator of order l (note that in the first module
structure it is a homomorphism). In fact, for any a ∈ A one has Dl(a+∆) =
∆(a).

Consider an arbitrary differential operator of order ∆ ∈ Diff+l (P, Q)
and let us establish a correspondence between this module and the module
HomA(P, Diff+l Q). Let us construct a mapping ϕ : A → Q by setting

(ϕ(∆)(p))(a) = ∆(ap), a ∈ A, p ∈ P.

One can easily check that it is a homomorphism and, moreover, it is an
isomorphism. In fact if f ∈ HomA(P, Diff+l Q) then the inverse mapping is
f �→ Dl ◦f . This means that for any differential operator ∆ of order l acting
from P to Q, there exists a homomorphism ϕ(∆) such that the diagram

P
∆

→ Q

�
�

�
�

�
ϕ(∆)

� �
�

�
�

�

Dl

�

Diff+l Q

is commutative.
In fact, we established that the functors

P �→ Diff+l (P, Q) and P �→ HomA(P, Diff+l Q)

act in the same way, they are identical to each other. In category theory this
means that the functor Diff+l (·, Q) is representable. The module Diff+l Q is
called the representative object for this functor.

21
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Consider now the operator Dl : Diff+l (Q) → Q. Then we can also con-
sider the composition

Diff+s (Diff+l (Q)) Ds−−→ Diff+l (Q)
Dl−→ Q,

which is a differential operator of order l + s. Hence, by the universal prop-

erty of the operator Diff+l+s Q
Dl+s−−−→ Q there exists a unique homomorphism

ϕ(Dl ◦ Ds)
def= cl,s such that the following diagram

Diff+s (Diff+l Q)
Ds→ Diff+l Q

Diff+s+l Q

cl,s

↓
Ds+l → Q

Dl

↓

is commutative. The mapping cl,s is called the universal composition. Uni-
versal composition is associative in the sense that the diagram

Diff+l (Diff+s (Diff+m Q))
cl,s→ Diff+l+s(Diff+m Q)

Diff+l (Diff+s+m Q)

Diff+l (cs,m)

↓
cl,s+m → Diff+s+l+m Q

cl+s,m

↓

is commutative.
Note also that the universal composition is related to any module Q

and, strictly speaking, we must write cl,s = cl,s(Q). Let ϕ : Q → Q′ be a
homomorphism. Then the diagram

Diff+l (Diff+s Q)
cl,s(Q)

→ Diff+l+s Q

Diff+l (Diff+s ϕ)

Diff+l (cs,m)

↓
cl,s(Q′)

→ Diff+l+s Q′

Diff+l+s(ϕ)

↓

is commutative. It means that cl,s : Diff+l Diff+s ⇒ Diff+l+s is a natural
transformation of functors.

Now consider the functor

Q �→ Diffl(P, Q)

for a fixed P and let us try to find the representative object for it. We need
to find something, ?(P ), which possesses the property

Diffl(P, Q) � HomA(?(P ), Q).

Consider the tensor product A ⊗K P and let us introduce two A-module
structures into this object. Namely, we set

b(a ⊗ p) = (ba)⊗ p, b+(a⊗ p) = a ⊗ (bp).
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In such a way we obtain bimodule since, given b, b′, we have

b(b′+(a ⊗ p)) = b′+(b(a⊗ p)).

Let us measure the difference between these two multiplications. If θ ∈
A ⊗K P , we set

[a, θ] def= aθ − a+θ.

Taking arbitrary elements a0, a1, . . .al ∈ A, we can consider the iterated
commutator

[a0, [a1, . . . [al, θ] . . . ]] ∈ A ⊗K P

and generate, for a fixed l, the submodule

µl(P ) def= { [a0, [a1, . . . [al, θ]]] }

taking all ai ∈ A and θ ∈ A ⊗K P . The quotient module

J l(P ) = A ⊗K P/µl(P ).

is called the module of l-jets.
Let us take an element a ⊗ p ∈ A ⊗K P and denote its coset in J l(P )

by [a⊗ p]. Having an element p ∈ P , we can consider the element 1⊗ p and
the coset [1 ⊗ p] thus defining the mapping

jl : P → J l(P ), p �→ jl(p) def= [1⊗ p].

The element jl(p) is called the l-jet of p.
The set J l(P ) is an A-module with respect to multiplication b[a⊗ p] def=

[ba⊗p]. Note that J 0(P ) = P . It can be easily proved that jl is a differential
operator of order l.

Theorem 10. Let ∆: P → Q be a differential operator of order ≤ l.
Then there exists a uniquely defined homomorphism ψ(∆) such that the di-
agram

P
∆

→ Q

�
�

�
�

�
jl

� �
�

�
�

�

ψ(∆)

�

J l(P )

is commutative.

From this theorem we obtain the isomorphism

Diffl(P, Q) � HomA(J l(P ), Q)

which means that the module J l(P ) is the representative object for the
functor Diffl(P, ·).
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Consider the operator jl. Being of order ≤ l, it is also of order ≤ l + 1
and consequently we have the commutative diagram

J l(P ) ←
νl+1,l J l+1(P )

�
�

�
�

��
jl+1

P

jl

↑

The mapping νl+1,l is dual to the embedding Diffl(P, Q) ↪→ Diffl+1(P, Q)
and, in fact, is an epimorphism. So, we have the sequence of mappings

P ≡ J 0(P ) ← J 1(P ) ← · · · ← J l(P ) ← J l+1(P ) ← · · · (48)

The kernel of the projection νl+1,l coincides with the quotient µl(P )/µl+1(P )
and thus we have the exact short sequence of modules

0 → µl(P )/µl+1(P ) → J l+1(P )
νl+1,l−−−→ J l(P ) → 0.

Now consider (48) and a sequence of elements θl, l = 0, 1, · · · , such that
θl ∈ J l(P ) and νl+1,l(θl+1) = θl. These sequences may be added to each
other and multiplied by elements a ∈ A component-wise. So they form an
A-module which is denoted by J∞(P ) and called the module of infinite jets.
If we know the sequence as a whole, we, in particular, know its l-th term
and thus get the mapping

ν∞,l : J∞(P ) → J l(P ).

From our definition it follows also that we can construct the diagram

J∞(P )

�
�

�
�

�

ν∞,l+1

�
J l(P )

ν∞,l

↓
←
νl+1,l

J l+1(P )

and it is commutative.
In particular, if p ∈ P , then the sequence {jl(p)}l≥0, is a element of

J∞(P ). It is denoted by j∞(p) and is called th infinite jet of the element p.
Obviously, ν∞,l(j∞(p)) = jl(p). Formally speaking, the mapping j∞ : P →
J∞(P ) is not a differential operator, that is there always exist a sequence
a0, . . . , al of an arbitrary high length such that

[a0, [a1, . . . [al, j∞] . . . ]] �= 0,

but if we restrict ourselves to a finite part, it becomes a differential operator.
The correspondence P �→ J l(P ) is a covariant functor. In fact, if we

consider a homomorphism f : P → Q, then the composition f ◦ jl is a
differential operator of order l, so there exists a unique homomorphism from
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J l(P ) to J l(Q), denoted by J l(f), such that the diagram

P
jl→ J l(P )

Q

f

↓
jl→ J l(Q)

J l(f)
↓

is commutative. Due to uniqueness, we have

J l(f ◦ g) = J l(f) ◦ J l(g)

whenever it makes sense.
Now consider a module P and for any l the operator jl : P → J l(P ).

Since J l(P ) is an A-module as well, we can take the composition

P
jl−→ J l(P )

js−→ J s(J l(P )),

which is a differential operator of order l + s. By the universal property, we
can construct the commutative diagram

P
jl+s→J l+s(P )

J l(P )

jl

↓
js→ J s(J l(P ))

cl,s

↓

and this mapping cl,s is dual to the universal composition map cl,s. The
homomorphisms cl,s and cl,s are adjoint in categorical sense and cl,s is called
the universal co-composition. This operation possesses the co-associativity
property expressed by commutativity of the diagram

J l+s+m(P )
cs,l+m

→ J s(J l+m(P ))

J s+l(Jm(P ))

cl+s,m

↓
cs+l,m

→ J s(J l(Jm(P )))

J s(cl,m)
↓

Consider now the case l = 1 and take the module J 1(A). Then we have
the mapping

i1 : A → J 1(A)

defined by i1(a) def= [a⊗1]. It is a homomorphism, so its image is a submod-
ule. Let us set

Λ1(A) def= J 1(A)/ im i1. (49)

Then we obtain the exact sequence of modules

0 → A
i1−→ J 1(A) π−→ Λ1(A) → 0,
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where π is the natural projection. The module Λ1(A) is called the module
of 1-forms of algebra A. The composition

d ≡ π ◦ j1 : A → Λ1(A)

is called the first de Rham differential and is a derivation of A with values
in Λ1(A). It is easy to check that Λ1(A) is generated by the elements da,
a ∈ A, with the relations

dab = adb + bda, dαa+βb = αda + βdb,

where a, b ∈ A, α, β ∈ K.
We continue to deal with differential forms. An immediate consequence

of Theorem 10 is

Theorem 11. For any derivation X : A → P there exists a unique ho-
momorphism ψ(X) : Λ1(A) such that the diagram

A
d
→ Λ1(A)

��
�

�
�

�

ψ(X)

P

X

↓

is commutative.

Hence, we have the isomorphism

HomA(Λ1(A), P ) = D(P ),

and the module of 1-forms is the representative object of the covariant func-
tor D(·).

Now let us define the module Λl(A) of differential l-forms as the l-th
exterior power of Λ1(A) (see Example 11), that is

Λl(A) =
l∧

Λ1(A)

(when A is fixed, we shall skip it as argument and use a simpler notation
Λl = Λl(A)). Thus, we have a series of modules

Λ0 = A, Λ1, Λ2, . . . , Λl, . . .

The module Λl is generated by the elements a0, da1∧ da2∧· · ·∧ dal and
we set by definition

d(a0 da1 ∧ da2 ∧ · · · ∧ dal) = da0 ∧ da1 ∧ da2 ∧ · · · ∧ dal. (50)

We take (50) for a definition of d and thus obtain the sequence of first order
differential operators

0 → A
d−→ Λ1 d−→ . . .

d−→ Λl−1 d−→ Λl d−→ · · · (51)

We call the mapping d the de Rham differentials and the sequence (51) is
called the de Rham complex of the algebra A.

Remark 2. This is a “bad” definition of the de Rham complex. A
“good” one refers to rather complicated categorial construction, which are
beyond the scope of these lectures.
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The basic properties of the de Rham differential are as follows:
(1) As it was already mentioned, it is a first order differential operator.
(2) It differentiates the wedge product, i.e.,

d(ω ∧ θ) = d(ω) ∧ θ + (−1)lω ∧ d(θ) (52)

where l is the degree of ω.
(3) d ◦ d = 0

From the last property it follows that

imd ⊂ ker d

at all terms in the chain (48). Hence, we can introduce the K-modules

H l(A) def= kerd/ imd,

which are called the de Rham cohomology of the algebra A.

Remark 3. Note that if you have an arbitrary sequence of homomor-
phisms

P0
∂0−→ P1

∂1−→ · · · → Pl−1
∂l−→ Pl

∂l+1−−−→ · · ·
with the property ∂l+1 ◦∂l = 0, you can realize the same construction. Such
sequences are called complexes of modules and the modules of the form
ker∂l+1/ im∂l are called homologies (or cohomologies) associated to these
complexes.

Now consider the composition js ◦ d : Λl−1 → J s(Λl). It is a differential
operator of order s + 1. Due to the universal property of operators js, we
obtain the following commutative diagram

· · · → Λl−1 d → Λl d → Λl+1 → · · ·

· · · → J s+1(Λl−1)

js+1

↓
S
→ J s(Λl)

js

↓
S
→ J s−1(Λl+1)

js−1

↓
→ · · ·

A simple exercise is to prove that the sequence

0 → A
jk−→ J k(A) S−→ J k−1(Λ1) → . . .J 1(Λk−1) S−→ Λk → 0

is a complex. It is called the Spencer complex of A and its cohomologies are
called the Spencer cohomologies.

We have established already that the module Λ1 is the representative
object for the functor D(·), i.e., D(P ) = HomA(Λ1, P ). Let us now try to
understand what functors are represented by the modules Λl. Let us set
HomA(Λl, P ) def= Dl(P ) and start with the case l = 2. Thus,

D2(P ) = HomA(Λ2, P ).

Note that there exists a natural homomorphism from this module to the
module HomA(Λ1, HomA(Λ1, P )); let us denote it by η. To construct this η,
we set

[η(f)](ω)(θ) def= f(ω ∧ θ),
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where f ∈ HomA(Λ2, P ), ω, θ ∈ Λ1. Hence, D2(P ) lies in D1(D1(P )). Con-
sequently, we can take an element ∇ ∈ D2(P ) and consider ∇(a), obtaining
a new derivation lying in D1(P ). Obviously,

∇(a)(b) = −∇(b)(a).

and thus we have

D2(P ) = {∇ : A → D1(P ) | ∇(a, b) = −∇(b, a)}.
In a similar way, for an arbitrary l, we have

HomA(Λl, P ) → HomA

(
Λ1, HomA(Λl−1, P )︸ ︷︷ ︸

Dl(P )

)
,

which means that we have a mapping from Dl(P ) to D1(Dl−1(P )). It means
that any element ∇ ∈ Dl(P ) can be evaluated at a1, . . . , al ∈ A and by
simple induction on l we obtain that ∇ : A × · · · × A → P lies in Dl(P ) if
and only if

(1) It is a derivation with respect to all arguments,

∇(a1, . . . , ai−1, ab, ai+1, . . . , al) = a∇(a1, . . . , ai−1, b, ai+1, . . . , al)

+ b∇(a1, . . . , ai−1, a, ai+1, . . . , al)

(2) It is skew-symmetric,

∇(a1, . . . , al) = (−1)|σ|∇(aσ(1), . . . , aσ(l)),

where |σ| denotes the parity.
So we have two ways to describe the module Dl(P ): the first one is to

identify Dl(P ) with HomA(Λl, P ) thus obtaining the coupling 〈∇, ω〉 ∈ P ;
the second one is to describe Dl(P ) as skew-symmetric derivations of the
form A × · · · × A → P . The relation between the two interpretation is

∇(a1, . . . , al) = 〈∇, da1 ∧ · · · ∧ dal〉.
Let us now define inductively the wedge product operation

∧ : Dl(A)⊗ Ds(P ) → Dl+s(P ).

When l = s = 0, we have D0(A) = A, D0(P ) = P and we set a ∧ p = ap.
Now, by induction on l + s we set for ∆ ∈ Dl(A) and ∇ ∈ Ds(P )

(∆ ∧∇)(a) = ∆ ∧∇(a) + (−1)|∇|∆(a) ∧∇. (53)

We formulate the final result in the following

Proposition 12. Let A be a commutative K-algebra and P be an A-
module. Then:

(1) The wedge product ∧ : Dl(A) ⊗ Ds(P ) → Dl+s(P ) is well defined
by (53).

(2) The module D∗(A) =
⊕

l≥0 Dl(A) is a graded associative commu-
tative algebra with respect to the wedge product, i.e.,

∆ ∧∇ = (−1)|∆|·|∇|∇∧ ∆.

(3) The module D∗(P ) =
⊕

l≥0 Dl(P ) is a graded module over D∗(A).
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Consequently, the correspondence P �→ D∗(P ) is a covariant functor
from the category of all A-modules to the category of all graded D∗(A)-
modules.

We shall now define a coupling between the modules D1(A) and Λl (the
inner product) Namely, if ω ∈ Λl and X ∈ D1(A), then for any ∇ ∈ Dl−1(P )
we set

〈∇, X ω〉 = (−1)|∇|〈X ∧∇, ω〉.
Thus, the inner product is the adjoint to the wedge product ∧ of poly-
derivations. We shall also use the notation iXω instead of X ω. The main
properties of the inner product are formulated in the following

Proposition 13. For any X, Y ∈ D(A) and ω, θ ∈ Λ∗ one has :
(1) The mapping iX : Λl → Λl−1 is A-linear.
(2) The action of is anticommutative, i.e.,

iX ◦ iY = −iY ◦ iX

(in particular iX ◦ iX = 0).
(3) For all a ∈ A one has iX(da) = X(a).
(4) Finally, it is a derivation of Λ∗ =

⊕
l≥0 Λl, i.e.,

iX(ω ∧ θ) = (iXω) ∧ θ + (−1)|ω|ω ∧ iXθ.

Now, we shall write the action of the de Rham differential in terms of
inner product. Introduce the notation

ω(X1, . . . , Xl) = iXl
(. . .(iX1ω) . . .) ∈ A.

Let ω be a form of degree l; then

(dω)(X1, . . . , Xl+1) =
l+1∑
α=1

(−1)α−1Xαω(X1, . . . , X̂α, . . . , Xl+1)

+
∑
α<β

(−1)α+βω([Xα, Xβ], X1, . . . , X̂α, . . . X̂β, . . . , Xl+1),

and it is the usual form of the de Rham differential.
Finally, we define the Lie derivative LX of a form ω ∈ Λl with respect

to a derivation X ∈ D1(A). Namely, we set

LX(ω) def= d(LXω) + LX(dω) = [d, LX]ω,

It is easy to check that LX : Λl → Λl satisfies the following properties:

Proposition 14. For any X, Y ∈ D1(A), ω, θ ∈ Λ∗, and a ∈ A one has
(1) LX : Λ∗ → Λ∗ is a K-linear mapping.
(2) LX is a derivation of Λ∗, i.e.,

LX(ω ∧ θ) = (LXω) ∧ θ + ω ∧ (LXθ).

(3) LX(dω) = d(LXω), i.e., [LX , d] = 0.
(4) LaX(ω) = aLXω + da∧ LXω.
(5) L[X,Y ] = [LX , LY ].
(6) [LX , iY ] = i[X,Y ].
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Our last step is to construct a bridge between algebraic theory of linear
differential operators and geometry of nonlinear differential equations. We
start with general considerations.

Consider an abstract mechanical system. To observe properties of the
system, you need the notion of observables and these observables are real
functions on the manifold M of positions. But the set of initial positions is
not sufficient to describe system dynamics: we must also know, for example,
momenta or velocities of the points, which adds to the picture cotangent
or tangent bundle of M . If particles under consideration possess additional
properties (e.g., spin),we should also add new variables corresponding to
these observables.

Let us begin with simplest situation. Suppose we have a smooth manifold
M (which can be understood as a set of states of a physical system). What
are smooth functions on this manifold? Of course, there is an analytical
definition, but how can it be understood in a geometric way? A function is
a smooth map from M to R. But one can consider the Cartesian product
M × R and the canonical projection π : M × R → M . Then to say that f
is a smooth function on M is the same as to say that f : M → M × R is a
smooth mapping satisfying

π ◦ f = idM . (54)

This definition can be generalized. Consider an additional manifold N and
the Cartesian product M×N . An N -valued function f is a smooth mapping
from M to M ×N satisfying the same identity (54). For instance if N = Rs,
we obtain the concept of smooth vector-valued functions on our manifold
M , i.e., functions represented by vectors (f1, . . . , fs), whose components are
just smooth real-valued functions.

Consider now a more complicated situation. Let M be a smooth mani-
fold. Then, by definition, it is locally diffeomorphic to Rn. If a point moves
in the neighborhood U ⊂ M and x = (x1, . . . , xn) are local coordinates of
this point in U , the velocity is just a tangent vector v1∂/∂x1+· · ·+vn∂/∂xn.
So at one point all possible velocities are described by points of Rn with co-
ordinates (v1, . . . , vn). If we consider two intersecting local charts U and
V and a point in their intersection, we can express the velocities in both
local coordinates. Then we have the sets of all possible velocities Rn × U
and Rn ×V and these two objects, if U ∩ V is not void, are related to each
other by the Jacobi matrix. In this way, spaces of “local velocities” in dif-
ferent neighborhoods are glued together to a new manifold TM called the
tangent manifold. There is a natural projection π : TM → M and locally

30
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the projection looks as the projection Rn × Rn → Rn. Any smooth map-
ping f : M → TM satisfying (54) may be understood as a field of velocities
on M .

This construction is a particular case of the following one. Consider
three smooth manifolds M , O, and F let π : O → M be a surjective smooth
mapping. Suppose any point x ∈ M possesses a neighborhood Ux = U such
that there exists a diffeomorphism ϕ = ϕU : π−1(Ux) → Ux × F satisfying
π

∣∣
π−1(Ux) = prUx

◦ϕ, where prUx
: Ux ×F → Ux is the projection to the first

component. In this case we say that this π is a locally trivial fiber bundle
over M , M is called the base, F the fiber, and O is called the total space of
the bundle π. The set Fx = π−1(x) is called the fiber over the point x. From
the definition it follows that for any x ∈ M there exists a diffeomorphism

ϕx : Fx → F. (55)

Example 33. For any two manifolds, M and F , the projection M×F →
M is a fiber bundle.

Example 34. The Möbius band is the total space of the bundle over
the circle S1 with the fiber R.

Example 35. The natural projection TM → M is a fiber bundle with
the fiber Rn, n = dimM .

Example 36. The natural projection T ∗M → M , where T ∗M is the
cotangent manifold, is a fiber bundle with the fiber Rn, n = dim M .

Now fix M and consider two fiber bundles π and π′. A morphism of π
to π′ is a smooth mapping ϕ : O → O′ such that the diagram

O
ϕ → O′

�
�

�
�

�
π

� ��
�

�
�

�

π′

M

(56)

is commutative. A morphism of bundles which is a diffeomorphism is called
an isomorphism. A bundle isomorphic the Cartesian product M×F is called
trivial. If the mapping ϕis an embedding, we say that π is a subbundle in
π′.

Fiber bundles over a manifold M together with their morphisms form a
category. To any bundle π : O → M one can put into correspondence the
set smooth mappings

Γ(π) def= {f : M → O | π ◦ f = idM}.
The elements of Γ(π) are called sections. The correspondence π �→ Γ(π) is
a functor from the category of fiber bundles to the category of sets. In fact,
if ϕ is a morphism of the form (56), we can set Γ(ϕ) : f �→ ϕ ◦ f ∈ Γ(π′) for
any f ∈ Γ(π).

We can generalize definition of a morphism in a following way. Let
π : O → M and π′ : O′ → M ′ be two fiber bundles and ψ : M → M ′ be a
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smooth mapping. Then ϕ : O → O′ is a morphism, if the diagram

O
ϕ → O′

M

π

↓
ψ

→ M ′

π′

↓

is commutative.
Now let us consider a smooth mapping g : M ′ → M and the subset in

Cartesian product M ′ × O, which consists of pairs defined by

g∗(O) = {(x′, o) | g(x′) = π(o)}
It is a submanifold in M ′ × O and can be mapped both to O and to M ′:

(x′, o) ∈ g∗(O)
π∗(g)→ O � o

x′ ∈ M ′

g∗(π)

↓
g → M

π

↓

By definition of the space g∗O, it is a commutative diagram and the mapping
g∗(π) : g∗(O) → M ′ is a fiber bundle. Is called the pullback (or induced
bundle). In particular, if g is an embedding, the bundle g∗(π) is called the
restriction of π to the submanifold M ′.

When g is a fiber bundle too, the diagonal arrow is a fiber bundle as
well:

g∗(O) → O

�
�

�
�

�

W

�
M ′

g∗(π)

↓
g → M

π

↓

and is called the Whitney product of bundles g and π. Note that if F is
the fiber of the bundle π and G is that of the bundle g, then the fiber of
Whitney product will be F × G.

In what follows, we shall deal with a special type of fiber bundle.

Definition 4. A fiber bundle π : O → M is called a vector bundle, if
(1) The fiber F is a vector space.
(2) For any U ,V ⊂ M such that ϕU : π−1(U) → U×F and ϕV : π−1(V) →

V × F the mappings

ϕU

∣∣∣
π−1(U∩V)

◦ ϕ−1
V

∣∣∣
(U∩V)×F

: U ∩ V) × F → (U ∩ V)× F

are fiber-wise linear.

We shall consider the case when F is an R-vector space. The dimension
of F as a vector space is called the dimension of a fiber bundle.
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Let π : O → M and π′ : O′ → M be two vector bundles and ϕ : O → O′

be a morphism. We say that ϕ is a morphism of vector bundles if it is
fiber-wise linear, i.e., ϕ(a + b) = ϕ(a) + ϕ(b) for any a, b ∈ Fx and x ∈ M .
Obviously, vector bundles over M together with vector bundle morphisms
form a category which we denote by Vect(M).

Consider now two sections f, g ∈ Γ(π) of a vector bundle π. Then, due
to vector space structure in the fibers, we can set

(f + g)(x) def= f(x) + g(x), x ∈ M.

Moreover, by the same reason, for any smooth function r ∈ C∞(M) we set

(rf)(x) def= r(x)f(x), x ∈ M.

Now, we see that the correspondence Γ: π �→ Γ(π) is a functor from the
category Vect(M) to the category Mod(C∞(M)) of C∞(M)-modules. An
amazing fact is that for any finite-dimensional manifold M and finite-di-
mensional vector bundle π the module Γ(π) is projective with finite number
of generators. Moreover, any such a module over the algebra C∞(M) can
be realized as Γ(π) for some vector bundle π! A detailed discussion of these
matters can be found in [10].

Let us fix now a smooth manifold M and establish relations between
calculus in the category Mod(C∞(M)) and analytical constructions over M
needed for the geometrical theory of differential equations.

Consider two vector bundles, π and ξ, over M . Then a linear differ-
ential operator of order k acting from π to ξ is an element of the module
Diffk(Γ(π), Γ(ξ)). Note that this definition is in full agreement with the
classical one. In a similar way, π-valued derivation on M are derivations
C∞(M) → Γ(π) and, in particular, C∞(M)-valued derivations coincide
with vector fields on M , or with section of the tangent bundle TM . We
shall meet no problem in carrying over the theory of functors Diff(+)

k , Di,
etc. to the geometric situation.

The problem will arise when passing to representative objects. Consider
a projective module P with finite number of generators over C∞(M). Then,
as we already know, a locally trivial vector bundle π over M corresponds
to P such that Γ(π) = P . Consider a point x ∈ M and the ideal µx

def=
{f ∈ C∞(M) | f(x) = 0}. The value of an element p ∈ P , as of a section
of π, at x is its coset p(x) in the quotient C∞(M)/µx, the latter being
a finite-dimensional space over the field C∞(M) = R. Projective modules
over C∞(M) are characterized by the fact that their elements are completely
determined by the values p(x) at all points x ∈ M . It follows from Theorem
9 and the fact that the bundles corresponding to free modules are trivial.

Example 37. Let M = R and A = C∞(M). The module Λ1(A) con-
tains, for example, the element d(ex) − ex dx. This element vanishes at all
points of R, but is nontrivial in Λ1(A). It is easy to find similar examples
for the modules of jets. Thus, in representative objects a sort of “ghost”
elements arise, which are not observed geometrically.

This example shows that the category of projective C∞(M)-modules
is not closed with respect to construction of representative objects for the
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basic functors of differential calculus and a straightforward approach does
not lead to geometrical constructions parallel to these objects.

To kill the “ghost” similar to the one arising in Example 37, we shall
apply the following procedure. For a smooth manifold M and a C∞(M)-
module P , let us set M(P ) def=

⋂
x∈M µx · P . Let us say that a module

is geometrical, if M(P ) = 0. The we have the functor of geometrization
G : P �→ P/M(P ) acting from the category of all C∞(M)-modules to the
category of geometrical modules over the same algebra.

Proposition 15. The functors Di(·) and Diffk(P, ·) are representable
in the category of geometrical modules over C∞(M). Moreover, for any
geometrical module Q one has

Di(Q) = HomC∞(M)(G(Λi(C∞(M)), Q)

and
Diffk(P, Q) = HomC∞(M)(G(J k(P )), Q).

Corollary 16. For any smooth manifold M one has

Λi(M) = G(Λi(C∞(M)).

To formulate a result similar to Corollary 16, we need a new geometrical
construction.

Let π : E → M be locally trivial vector bundle. Consider a point θ ∈ E,
π(θ) = x ∈ M , and a section f ∈ Γ(π) whose graph passes through θ:
f(x) = θ. Denote by [f ]kx the set of sections whose graphs are tangent to
the graph of f at θ with order k. This class is called the k-jet of f at x.
Obviously, it is completely determined by the Taylor expansion of f at x of
order k. Let us choose a coordinate neighborhood U � x in such a way that
the bundle π becomes trivial over U . Let x1, . . . , xn be local coordinates in
U and e1, . . . , em be a basis in the fiber of π. Then any section is locally
represented as f = f1e1 + · · ·+fmem, where f j = f j(x1, . . . , xn) are smooth
functions on U . Hence, the class [f ]kx is completely determined by the values
of all partial derivatives ∂|σ|f j/∂xσ at x, j = 1, . . . , m, 0 ≤ |σ| ≤ k. Denote
the number of these partial derivatives by N = N (n, m, k).

Now, let us take an atlas
{
Uα

}
in M consisting of coordinate neighbor-

hoods of the above described type. Consider the set

Jk(π) def= {[f ]kx | x ∈ M, f ∈ Γ(π)}. (57)

It is covered by the subsets

Ũα
def= {[f ]kx | x ∈ Uα, f ∈ Γ(π)}. (58)

Define coordinate functions xi and pj
σ in Uα by

xi([f ]kx) = xi, pj
σ([f ]kx) =

∂|σ|f j

∂xσ
(x). (59)

Then functions (59) establish a one-to-one correspondence between Ũα and
the space Uα × RN .
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Proposition 17. The system of sets Ũα together with coordinate func-
tions (59) constitute an atlas in the set Jk(π). Thus Jk(π) becomes a smooth
manifold. Moreover, the projection πk : Jk(π) → M , πk([f ]kx)

def= x, is a
smooth locally trivial vector bundle.

Definition 5. The manifold Jk(π) is called the manifold of k-jets em-
phmanifold of jets for the bundle π. The bundle πk is called the bundle of
k-jetsemphbundle of jets for the bundle π.

We can now formulate a statement similar to Corollary 16:

Proposition 18. Let M be a smooth manifold and π : E → M be a
locally trivial vector bundle. Let P = Γ(π). Then

Γ(πk) = G(J k(P )).

Manifolds of jets is a natural environment for geometrical theory of dif-
ferential equations. This theory will be discussed in the next lecture course.



Exercises

Exercise 1. Let A be a ring. Prove that 0 · a = a · 0 = 0 for all a ∈ A.

Exercise 2. Let A be a set and 2E the set of all subsets of A. Two
natural binary operations exist in 2E : the union ∪ and the intersection ∩
operations.

(1) Show that 2E is not a ring with respect to these operations.
(2) Prove that if we define

a · b = a ∩ b (60)

a + b = (a ∩ b) ∪ (a ∩ b) (61)

where the “ bar” denotes complement in E, then 2E is a commu-
tative unitary ring.

Exercise 3. Consider the set Z2 = {0, 1}. Check that it is a commuta-
tive ring with the following rules of summation

0 + 0 = 1, 1 + 0 = 1, 1 + 1 = 0

and the usual ones for multiplication.

Let now E be a set. The characteristic functions of a subset a ∈ 2E is defined
as

χa(x) =

{
1 x ∈ a

0 x /∈ a

Since there exists a one-to-one correspondence between 2E and the set of charac-
teristic functions X(E), we can introduce the structure of a ring in the latter by
setting

χa + χb = χa+b, χaχb = χa·b,

where a, b ∈ 2E and sum and product of sets are defined by (60) and (61).

Exercise 4. Prove that the correspondence 0 �→ χ∅, 1 �→ χE is a
homomorphism of Z2 to X(E) and thus X(E) is a Z2-algebra.

Exercise 5. Let A and B be two rings and f : A → B be a ring homo-
morphism. Prove that ker f is a two-sided ideal in A.

Exercise 6. Let A be a ring and I be a two-side ideal of A. Consider
the quotient A/I and prove that the operations

[a] + [b] def= [a + b], [a] · [b] def= [ab]

determine a well-defined ring structure in A/I . What structure will be
carried by A/I , if I is a left or right ideal?

36
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Exercise 7. Let A = C∞(R) and x ∈ R. Consider the set

µx =
{
f ∈ A | f(x) = 0

}
.

Prove that µx is an ideal and that A/µx is isomorphic to R.

Exercise 8. Let again A = C∞(R) and x, y ∈ R be two different points.
Consider the set

µxy = {f ∈ A | f(x) = f(y) = 0} .

Prove that µxy is an ideal and that A/µxy, as an R-vector space is isomorphic
to R2 and describe the ring structure in terms of a basis in R2.

This problem has an interesting prolongation. Of course, if we set x = y, the
result will the same as in Exercise 7. But we can act in a different way. Namely,
let d = d(x, y) be the distance between the points x and y. Then, as d → 0, the
ideal Ixy becomes

I =
{

f ∈ C∞(R) | f(x) =
df

dx
(x) = 0

}
and you can prove that A/I is still isomorphic to R2 as a vector space, but sum
and product will be defined as follows

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

(a1, b1) · (a2, b2) = (a1a2, a1b2 + a2b1).

Now we shall need the following

Definition 6. Let A be a ring and I ⊂ A an ideal. The ideal I is called
principal, if there exists an element a ∈ A such that I = {aA}.

If all ideals of A are principal ideals then A is called principal ideal domain.
We shall denote by In the principal ideals of Z (that is ideals of the form

In = nZ with n ∈ Z).

Exercise 9. Prove that Z is a principal ideal domain.

Exercise 10. Let p ∈ Z Prove that Zp
def= Z/Ip is a field if and only if

p is prime.

Let us, for example, consider the case p = 3. Then

Z/3Z = {[0], [1], [2]}
and we can write the tables of sum and multiplication:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Exercise 11. Prove that nZ ⊂ mZ if and only if m divides n.

For an arbitrary ring A and its ideals I and I′ we can define the ideal I + I′ by
setting

I + I′
def= {a + b | a ∈ I, b ∈ I′}.

Exercise 12. Consider the ideals nZ and mZ with m, n ∈ Z. Then
nZ + mZ = lZ for some l ∈ Z. Prove that l is maximal common divisor
(mcd) of m and n.
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Exercise 13. Prove also that nZ ∩ mZ = sZ with s being the minimal
common multiple (mcm) of m and n.

Exercise 14. Let A be a field. Prove that I ⊂ A is an ideal if and only
if I = {0} or I = A. Thus, fields, and they only, have no nontrivial ideals.

Exercise 15. Let A be a (commutative unitary) ring. Prove I ⊂ A is
a maximal ideal if and only if A/I is a field.

Exercise 16. Prove that an ideal I ⊂ A is prime if and only if the
quotient A/I possesses no zero divisors.

Exercise 17. Prove that any maximal ideal is prime.

Exercise 18. Prove that any ideal is contained in a maximal ideal.
(Hint : Use the Zorn Lemma.)

Exercise 19. Let A be a ring and I ⊂ A be its ideal. Consider the
natural projection π : A → A/I , π(a) = [a]. Prove that:

(1) if J ⊂ A/I is an ideal then π−1(J) ⊂ A is an ideal in A containing
I ;

(2) if I ′ ⊂ A is an ideal, then π(J) ⊂ A/I is an ideal too.

Exercise 20. Construct an example of projective module which is not
free.

Exercise 21. Let x ∈ R and µx ⊂ C∞(R) be the ideal of functions
vanishing at x. Prove that µx is a projective C∞(R)-module. Is it true for
the case Rn?

Exercise 22. Let x ∈ S1 and µx ⊂ C∞(S1) be the ideal of functions
vanishing at x. Prove that µx is a projective C∞(S1)-module.

Exercise 23. Prove that P is projective if and only if the exists P ′ such
that P ′ ⊕ P is a free module.

Exercise 24. Prove that P is a projective module if and only if for any
A-modules Q and R an exact sequence

0 → Q
i−→ R

π−→ P → 0

splits, i.e., there exists a homomorphism j : P → R such that π ◦ j = idP .

Exercise 25. Let
0 → R → S → T → 0

Be an exact sequence of modules. Prove that P is projective if and only if
the sequence

0 → HomA(P, R) → HomA(P, S) → HomA(P, T )

is an exact as well.

Exercise 26. Consider C∞(R) and vector valued functions (i.e., rows
consisting of smooth functions)

C∞(R)⊕ · · · ⊕ C∞(R).

Compute derivations of C∞(R) with values in this module.
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Exercise 27. Let A = C∞(R), P = A ⊕ A be the set of vector valued
functions with two components. Describe first order differential operators
acting from P to itself.

Exercise 28. Consider the cross M = {(x, y) | xy = 0} ⊂ R2} and let
us define the algebra A = C∞(M) by

C∞(M) def= {f : M → R | f = f ′|M , f ′ ∈ C∞(R2)}
(1) Describe all tangent vectors at the point 0.
(2) Describe all derivations A → A.
(3) Describe Diff∗(A). Show that this algebra is not generated by

functions Diff0(A) = A and derivations D(A) (contrary to the case
of smooth manifolds).

Exercise 29. Let A = C(R) the algebra of all continuous functions on
R. Prove that D(A) = 0.

Exercise 30. Let A = R[x]/(xn). Describe D(A), Diff∗(A).

Exercise 31. Let A = Zm[x]/(xn). Describe D(A), Diff∗(A).

For any commutative K-algebra A, let us introduce the quotient modules

Smblk A
def= Diff(+)

k A/ Diff(+)
k−1 A

and denote by smblk ∆ the coset of ∆ ∈ Diff(+)
k A in Smblk A. This coset is called

the symbol of the operator ∆.

Exercise 32. Prove that the module structures inherited by Smblk A
from Diff+k A and from Diffk A coincide.

Let f = smblk ∆ and g = smbll ∇, ∆ ∈ Diffk A, ∇ ∈ Diffl A. Let set f · g def=
smblk+l(∆ ◦ ∇). Then Smbl∗ A =

⊕
i≥0 Smbli A becomes an algebra, which is call

the algebra of symbols for A. Let us also set {f, g} def= smblk+l−1(∆ ◦ ∇ −∇ ◦ ∆).

Exercise 33. Prove that Smbl∗ A is a commutative algebra with respect
to the multiplication (f, g) �→ f · g.

Exercise 34. Prove that Smbl∗ A is a Lie K-algebra with respect to
the multiplication (f, g) �→ {f, g} and

{f, g · h} = {f, g} · h + g · {f, h}
for any f, g, h ∈ Smbl∗ A.

Exercise 35. Write down the action of cl,s in terms of elements and
prove commutativity of all the diagrams above.

Exercise 36. Prove the associativity law for the universal composition
cl,s.

Exercise 37. Prove that the universal composition cl,s is a natural
transformation of functors.

Exercise 38. Let ∆ ∈ Diff(+)
l (A) with A = C∞R). Prove in coordinate

form that ∇ = [a, ∆] lies in Diff+l−1 A.

Exercise 39. Prove that id+ and id+ are differential operators.
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Exercise 40. Consider the operator Dl : Diff+l A → A defined in (47).
Check in coordinate form that it is a differential operator of order l (in
algebraic form it has already been proved) for A = C∞(Rn).

Exercise 41. Prove the isomorphism between the modules Diff+l (P, Q)
and HomA(P, Diff+l Q).

Exercise 42. Let P = Q =
{(

f1
f2

)
| f2 ∈ C∞(R) ≡ A

}
. Describe the

homomorphism ϕ(∆): P → Diff+ P for an arbitrary differential operator
∆: P → P .

Exercise 43. Prove that J k(P ) is the representative object for the
functor Diffk(P, ·) (Theorem 10).

Exercise 44. Prove the embeddings µl+1 ⊂ µl for the submodules µl ⊂
A ⊗K P defining J l(P ).

Exercise 45. Prove that µl/µl+1 = ker νl+1,l, where the projections
νl+1,l : J l+1(P ) → J l(P ) is defined by the universal property of J l(P ).

Exercise 46. Prove co-associativity of the co-composition ck,l : J k+l →
J k(J l(P )).

Exercise 47. Prove that the co-composition ck,l is a natural transfor-
mation of functors J k+l and J k(J l(P )).

Exercise 48. Prove that Λ1 is the representative object for the functor
D1(·) (Theorem 11).

Let P be an A-module and N ⊂ P be a subset in P . Introduce the notation

D(N) def= {∆ ∈ D(P ) | im∆ ⊂ N}.
Of course, in general, D(N) does not possess an A-module structure.

Exercise 49. Prove that the modules Di(P ) may be defined in the
following inductive way: D0(P ) = P , D1(P ) = D(P ) and

Di+1(P ) = D
(
Di(P ) ⊂ (Diff+1 )i(P )

)
Exercise 50. Prove the basic properties inner product (Proposition 13):
(1) The mapping iX : Λl → Λl−1 is A-linear.
(2) The action of is anticommutative, i.e.,

iX ◦ iY = −iY ◦ iX

(in particular iX ◦ iX = 0).
(3) For all a ∈ A one has iX(da) = X(a).
(4) Finally, it is a derivation of Λ∗ =

⊕
l≥0 Λl, i.e.,

iX(ω ∧ θ) = (iXω) ∧ θ + (−1)|ω|ω ∧ iXθ.

Exercise 51. Prove the basic properties of the de Rham differential d:
(1) It is a first order differential operator.
(2) It differentiates the wedge product, i.e.,

d(ω ∧ θ) = d(ω) ∧ θ + (−1)lω ∧ d(θ)
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(3) d ◦ d = 0

Exercise 52. Prove the formula

dω(X1, . . . , Xn) =
∑

i

Xi(ω(X1, . . . , X̂i, . . . , Xn))

+
∑
i<j

(−1)i+jω([Xi, Xj], X1, . . . , X̂i, . . .X̂j, . . . , Xn).

Exercise 53. Prove the basic properties of Lie derivatives (Proposi-
tion 14):

(1) LX : Λ∗ → Λ∗ is a K-linear mapping.
(2) LX is a derivation of Λ∗, i.e.,

LX(ω ∧ θ) = (LXω) ∧ θ + ω ∧ (LXθ).

(3) LX(dω) = d(LXω), i.e., [LX , d] = 0.
(4) LaX(ω) = aLXω + da∧ LXω.
(5) L[X,Y ] = [LX , LY ].
(6) [LX , iY ] = i[X,Y ].

Exercise 54. Prove the formula

(LXω)(X1, . . . , Xn) = Xω(X1, . . . , Xn) +
n∑

i=1

ω(X1, . . . , [X, Xi], . . . , Xn).

A K-algebra A is called smooth if (a) K is an algebra over the field Q of rational
numbers and (b) Λ1(A) is a projective module with finite number of generators.

Exercise 55. Prove that when A is a smooth algebra, then one has the
isomorphism

ker νl,l−1 = S⊗kΛ1(A),
where S⊗k denotes the k-th symmetric power of a module.

Exercise 56. Prove that when A is a smooth algebra and P is a pro-
jective module, then J k(P ) is projective as well.

Exercise 57. Prove that for smooth algebras the algebra Diff∗ A is
multiplicatively generated by elements of Diff1 A (cf. Exercise 28).

Let A be a commutative ring. The set Spec A consisting of all its prime ideals
is called the spectrum of A. Let a ∈ A. Let us define

Ua
def= {I ∈ Spec A | a /∈ I}

and take the system {Ua}a∈A for a base of open sets in Spec A. Thus, Spec A
becomes a topological space and the corresponding topology in Spec A is called
the Zarissky topology. If f : A → B is an algebra homomorphism, then for any
I ∈ Spec B the set f−1I ⊂ A is a prime ideal in A. Thus we obtain the mapping
f∗ : Spec B → Spec A which is continuous in Zarissky topology. It is easy to see
that the correspondence A �→ Spec A determines a contravariant functor from the
category of commutative rings to that of topological spaces.

The set Specm A of maximal ideals contains in Spec A, but the correspondence
A �→ Specm A is not functorial. Nevertheless, we can consider the following con-
struction. Fix a field k and call a homomorphism ϕ : A → k a k-point. Denote the
set of k-points by Spec

k
A. Let a ∈ A and U

def= {ϕ ∈ Spec
k
A | ϕ(a) �= 0. Taking
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{Ua}a∈A for a base of open sets, we make a topological space of Spec
k
A. The

correspondence A �→ Spec
k
A determines a functor and there exists natural con-

tinuous mappings Spec
k
A → Specm A → Spec A (the composition being a natural

transformation of functors Spec
k
A and Spec A!).

Exercise 58. Consider the polynomial algebra A = R[x]. Describe
Spec A, SpecRA and SpecCA.

Exercise 59. Consider the ring of periodic functions

A = {f ∈ C∞(R) | f(x) = f(x + 1) ∀x ∈ R}.
Describe SpecRA.

Exercise 60. Let

A = {f ∈ C∞(R2) | f(x, y) = f(x, y + 1) ∀(x, y) ∈ R2}.
Prove that SpecRA � S1 × R.

Exercise 61. Let

A = {f ∈ C∞(R2) | f(x + 1, y) = f(x, y) = f(x, y + 1) ∀(x, y) ∈ R2}.
Prove that SpecRA � S1 × S1.

Exercise 62. Let

A = {f ∈ C∞(R2) | f(x + 1, y) = f(x, y) = f(x,−y) ∀(x, y) ∈ R2}.
Prove that SpecRA is the Klein bottle.

Exercise 63. Let

A = {f ∈ C∞(R2) | f(x, y) = f(x + 1,−y) ∀(x, y) ∈ R2}.
Prove that SpecRA is the Möbius band.

Exercise 64. Let

A = {f ∈ C∞(R3 \ {0}) | f(x, y, z) = f(λx, λy, λz)∀λ > 0}.
Prove that SpecRA � S2.

Exercise 65. Let

A = {f ∈ C∞(R3 \ {0}) | f(x, y, z) = f(λx, λy, λz) ∀λ �= 0}.
Prove that SpecRA � RP2.

Exercise 66. Let

A = C∞(R3)/(x2 + y2 + z2).

Prove that SpecRA � S2.

Exercise 67. Consider the ring of characteristic functions (see Exer-
cise 3) and describe its spectrum and Zarissky topology.

Exercise 68. Consider the ring of smooth bounded functions on Rn

and describe its spectrum and Zarissky topology.

Exercise 69. Prove that functions (59) on p. 34 determine a smooth
manifold structure on Jk(π) (Proposition 17).
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Exercise 70. Prove that πk : Jk(π) → M is a smooth locally trivial
vector bundle.

Exercise 71. Let M be a smooth manifold and τ∗ : T ∗M → M be
its cotangent bundle. Prove that Γ(τ∗) = G(Λi(C∞(M)), where G is the
geometrization functor.

Exercise 72. Let π : E → M be a smooth finite-dimensional vector
bundle and πk : Jk(π) → M be the bundle of its k-jets. Prove that Γ(πk) =
G(J k(P )), where P = Γ(π).
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