Manno G. Conformal geometric aspects of hyperplane sections of Lagrangian Grassmannians, talk at The Workshop on Integrable Nonlinear Equations, 18-24 October 2015, Mikulov, Czech Republic (abstract)

From Geometry of Differential Equations
Jump to: navigation, search

Speaker: Giovanni Manno

Title: Conformal geometric aspects of hyperplane sections of Lagrangian Grassmannians

Abstract:
The Lagrangian Grassmannian L(2,4) is a smooth 3-dimensional manifold naturally equipped with a conformal metric. We will use this structure to define a conformally invariant second-order differential operator whose vanishing characterizes the hyperplane sections of L(2,4). We shall generalize such a result to L(3,6), where the natural conformal structure is no longer represented by a metric, but by a symmetric 3-tensor instead. This talk is based upon an ongoing work with G.Moreno and J.Gutt.

Slides: Manno G. Conformal geometric aspects of hyperplane sections of Lagrangian Grassmannians (presentation at The Workshop on Integrable Nonlinear Equations, 18-24 October 2015, Mikulov, Czech Republic).pdf