zyy+(1/z)xx+2=0.
[B-M]
Let
A=(18(λ2+1)zxλz+18(−λ2+1)zyλ14(λ+1)2zλ14(λ−1)2zλ−18(λ2+1)zxλz−18(−λ2+1)zyλ),
B=(18(−λ2+1)zxλz2+18(λ2+1)zyλz14−λ2+1λz14−λ2+1λz−18(−λ2+1)zxλz2−18(λ2+1)zyλz).
Then Dy−Dx+[A,B]=0. [B-M]
Lax pair reformulation
ψxx=(−12μ2zxx(μ+1)(μ−1)z+12μzxy(μ+1)(μ−1)+14μ2(3μ2−2)zx2(μ+1)2(μ−1)2z2−12μ3zxzy(μ+1)2(μ−1)2z+14μ2zy2(μ+1)2(μ−1)2+zμ2(μ+1)2(μ−1)2)ψ,
ψy=−μzψx−12μzxz2ψ.
[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007.