Example: Constant astigmatism equation

From Geometry of Differential Equations
Jump to navigation Jump to search

Equation

zyy+(1/z)xx+2=0.

[B-M]


Zero curvature representation

Let

A=(18(λ2+1)zxλz+18(λ2+1)zyλ14(λ+1)2zλ14(λ1)2zλ18(λ2+1)zxλz18(λ2+1)zyλ),

B=(18(λ2+1)zxλz2+18(λ2+1)zyλz14λ2+1λz14λ2+1λz18(λ2+1)zxλz218(λ2+1)zyλz).

Then the constant astigmatism equation is equivalent to DyADxB+[A,B]=0. [B-M]

Lax pair reformulation

ψxx=(12μ2zxx(μ+1)(μ1)z+12μzxy(μ+1)(μ1)+14μ2(3μ22)zx2(μ+1)2(μ1)2z212μ3zxzy(μ+1)2(μ1)2z+14μ2zy2(μ+1)2(μ1)2+μ2z(μ+1)2(μ1)2)ψ,

ψy=μzψx12μzxz2ψ.

Here λ=(1μ)/(1+μ), the corresponding gauge matrix being

(2λzz(λ+1)014(λ1)2λzzxλz32(λ+1)14λz(λ1)zyλz12z(λ+1)λz).


References

[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007, arXiv:1002.0989