Popowicz Z. Generalized Peakon's equations, talk at The Workshop on Geometry of PDEs and Integrability, 14-18 October 2013, Teplice nad Becvou, Czech Republic (abstract)

From Geometry of Differential Equations
Revision as of 12:57, 13 November 2013 by Verbovet (talk | contribs)
Jump to navigation Jump to search

Speaker: Ziemowit Popowicz

Title: Generalized Peakon's equations

Abstract:
New Lax representation which generates the four component system of equations will  be discussed. The Bi-Hamiltonian structure and conserved quantities of this system  will be discussed. Under the special reduction our system is reduced to the  two­component Qiao or Novikow equation which later could be reduced to the  Comassa-Holm or Degasperis-Procesi equations.

Slides: Popowicz Z. Generalized Peakon's equations (presentation at The Workshop on Geometry of PDEs and Integrability, 14-18 October 2013, Teplice nad Becvou, Czech Republic).pdf