Example: Constant astigmatism equation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
gauge and parameter transformation |
||
Line 14: | Line 14: | ||
A = \left(\begin{array}{cc} | A = \left(\begin{array}{cc} | ||
\displaystyle \frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} + \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda} & | \displaystyle \frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} + \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda} & | ||
\displaystyle \frac{1}{4} \frac{(\lambda + 1)^2 \sqrt{z}}{\lambda} \\ | \displaystyle \frac{1}{4} \frac{(\lambda + 1)^2 \sqrt{z}}{\lambda} \\[2ex] | ||
\displaystyle \frac{1}{4} \frac{(\lambda - 1)^2 \sqrt{z}}{\lambda} & | \displaystyle \frac{1}{4} \frac{(\lambda - 1)^2 \sqrt{z}}{\lambda} & | ||
\displaystyle -\frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} - \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda} | \displaystyle -\frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} - \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda} | ||
Line 23: | Line 23: | ||
B = \left(\begin{array}{cc} | B = \left(\begin{array}{cc} | ||
\displaystyle \frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} + \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z} & | \displaystyle \frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} + \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z} & | ||
\displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} \\ | \displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} \\[2ex] | ||
\displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} & | \displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} & | ||
\displaystyle -\frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} - \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z} | \displaystyle -\frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} - \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z} | ||
Line 47: | Line 47: | ||
\psi_y = -\frac{\mu}{z} \psi_x - \frac{1}{2} \frac{\mu z_x}{z^2} \psi. | \psi_y = -\frac{\mu}{z} \psi_x - \frac{1}{2} \frac{\mu z_x}{z^2} \psi. | ||
</math> | </math> | ||
Here <math>\lambda = (1 - \mu)/(1 + \mu)</math>, the corresponding gauge matrix being | |||
<math> | |||
\left(\begin{array}{cc} | |||
\displaystyle 2 \frac{\sqrt{\lambda \sqrt{z}}}{\sqrt{z}(\lambda + 1)} & 0 \\[2ex] | |||
\displaystyle \frac{1}{4} \frac{(\lambda - 1)^2 \sqrt{\lambda \sqrt{z}} z_x}{\lambda z^{\frac{3}{2}}(\lambda + 1)} | |||
- \frac{1}{4} \frac{\sqrt{\lambda \sqrt{z}}(\lambda - 1) z_y}{\lambda \sqrt{z}} & | |||
\displaystyle \frac{1}{2} \frac{\sqrt{z}(\lambda + 1)}{\sqrt{\lambda \sqrt{z}}} | |||
\end{array}\right). | |||
</math> | |||
==References== | ==References== |
Latest revision as of 12:15, 11 December 2013
Equation
[B-M]
Zero curvature representation
Let
Then the constant astigmatism equation is equivalent to [B-M]
Lax pair reformulation
Here , the corresponding gauge matrix being
References
[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007, arXiv:1002.0989