Example: Constant astigmatism equation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 35: | Line 35: | ||
<math> | <math> | ||
\psi_{xx} | \psi_{xx} | ||
= \ | = \biggl( | ||
-\frac{1}{2} \frac{\mu^2 z_{xx}}{(\mu + 1)(\mu - 1) z} | -\frac{1}{2} \frac{\mu^2 z_{xx}}{(\mu + 1)(\mu - 1) z} | ||
+ \frac{1}{2} \frac{\mu z_{xy}}{(\mu + 1)(\mu - 1)} | + \frac{1}{2} \frac{\mu z_{xy}}{(\mu + 1)(\mu - 1)} | ||
Line 41: | Line 41: | ||
- \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z} | - \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z} | ||
+ \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{\mu^2 z}{(\mu + 1)^2 (\mu - 1)^2} | + \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{\mu^2 z}{(\mu + 1)^2 (\mu - 1)^2} | ||
\ | \biggr) \psi, | ||
</math> | </math> | ||
Revision as of 14:58, 6 December 2013
Equation
[B-M]
Zero curvature representation
Let
Then the constant astigmatism equation is equivalent to [B-M]
Lax pair reformulation
References
[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007.