Example: Constant astigmatism equation: Difference between revisions
Jump to navigation
Jump to search
Equation, its, zero curvature representation, Lax pair |
mNo edit summary |
||
Line 40: | Line 40: | ||
+ \frac{1}{4} \frac{\mu^2(3 \mu^2 - 2) z_x^2}{(\mu + 1)^2 (\mu - 1)^2 z^2} | + \frac{1}{4} \frac{\mu^2(3 \mu^2 - 2) z_x^2}{(\mu + 1)^2 (\mu - 1)^2 z^2} | ||
- \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z} | - \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z} | ||
+ \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{ | + \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{\mu^2 z}{(\mu + 1)^2 (\mu - 1)^2} | ||
\Bigr) \psi, | \Bigr) \psi, | ||
</math> | </math> |
Revision as of 14:28, 6 December 2013
Equation
[B-M]
Zero curvature representation
Let
Then [B-M]
Lax pair reformulation
References
[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007.