Example: Constant astigmatism equation: Difference between revisions

From Geometry of Differential Equations
Jump to navigation Jump to search
Michal (talk | contribs)
Equation, its, zero curvature representation, Lax pair
Michal (talk | contribs)
mNo edit summary
Line 40: Line 40:
  + \frac{1}{4} \frac{\mu^2(3 \mu^2 - 2) z_x^2}{(\mu + 1)^2 (\mu - 1)^2 z^2}
  + \frac{1}{4} \frac{\mu^2(3 \mu^2 - 2) z_x^2}{(\mu + 1)^2 (\mu - 1)^2 z^2}
  - \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z}
  - \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z}
  + \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{z \mu^2}{(\mu + 1)^2 (\mu - 1)^2}
  + \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{\mu^2 z}{(\mu + 1)^2 (\mu - 1)^2}
\Bigr) \psi,
\Bigr) \psi,
</math>
</math>

Revision as of 14:28, 6 December 2013

Equation

zyy+(1/z)xx+2=0.

[B-M]


Zero curvature representation

Let

A=(18(λ2+1)zxλz+18(λ2+1)zyλ14(λ+1)2zλ14(λ1)2zλ18(λ2+1)zxλz18(λ2+1)zyλ),

B=(18(λ2+1)zxλz2+18(λ2+1)zyλz14λ2+1λz14λ2+1λz18(λ2+1)zxλz218(λ2+1)zyλz).

Then DyDx+[A,B]=0. [B-M]

Lax pair reformulation

ψxx=(12μ2zxx(μ+1)(μ1)z+12μzxy(μ+1)(μ1)+14μ2(3μ22)zx2(μ+1)2(μ1)2z212μ3zxzy(μ+1)2(μ1)2z+14μ2zy2(μ+1)2(μ1)2+μ2z(μ+1)2(μ1)2)ψ,

ψy=μzψx12μzxz2ψ.


References

[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007.