Example: Constant astigmatism equation: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
Equation, its, zero curvature representation, Lax pair |
||
Line 31: | Line 31: | ||
Then <math>D_y - D_x + [A,B] = 0.</math> [B-M] | Then <math>D_y - D_x + [A,B] = 0.</math> [B-M] | ||
Lax pair | Lax pair reformulation | ||
<math> | <math> | ||
Line 41: | Line 41: | ||
- \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z} | - \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z} | ||
+ \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{z \mu^2}{(\mu + 1)^2 (\mu - 1)^2} | + \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{z \mu^2}{(\mu + 1)^2 (\mu - 1)^2} | ||
\Bigr) \psi | \Bigr) \psi, | ||
</math> | </math> | ||
<math> | |||
\psi_y = -\frac{\mu}{z} \psi_x - \frac{1}{2} \frac{\mu z_x}{z^2} \psi. | |||
</math> | |||
Revision as of 14:24, 6 December 2013
Equation
[B-M]
Zero curvature representation
Let
Then [B-M]
Lax pair reformulation
References
[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007.