Example: Constant astigmatism equation: Difference between revisions

From Geometry of Differential Equations
Jump to navigation Jump to search
Michal (talk | contribs)
mNo edit summary
Michal (talk | contribs)
mNo edit summary
Line 30: Line 30:


Then <math>D_y - D_x + [A,B] = 0.</math> [B-M]
Then <math>D_y - D_x + [A,B] = 0.</math> [B-M]
Lax pair formulation
<math>
\psi_{xx}
= \Bigl(
-\frac{1}{2} \frac{\mu^2 z_{xx}}{(\mu + 1)(\mu - 1) z}
+ \frac{1}{2} \frac{\mu z_{xy}}{(\mu + 1)(\mu - 1)}
+ \frac{1}{4} \frac{\mu^2(3 \mu^2 - 2) z_x^2}{(\mu + 1)^2 (\mu - 1)^2 z^2}
- \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z}
+ \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{z \mu^2}{(\mu + 1)^2 (\mu - 1)^2}
\Bigr) \psi
</math>





Revision as of 13:02, 6 December 2013

Equation

zyy+(1/z)xx+2=0.

[B-M]


Zero curvature representation

Let

A=(18(λ2+1)zxλz+18(λ2+1)zyλ14(λ+1)2zλ14(λ1)2zλ18(λ2+1)zxλz18(λ2+1)zyλ),

B=(18(λ2+1)zxλz2+18(λ2+1)zyλz14λ2+1λz14λ2+1λz18(λ2+1)zxλz218(λ2+1)zyλz).

Then DyDx+[A,B]=0. [B-M]

Lax pair formulation

ψxx=(12μ2zxx(μ+1)(μ1)z+12μzxy(μ+1)(μ1)+14μ2(3μ22)zx2(μ+1)2(μ1)2z212μ3zxzy(μ+1)2(μ1)2z+14μ2zy2(μ+1)2(μ1)2+zμ2(μ+1)2(μ1)2)ψ


References

[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007.