Example: Constant astigmatism equation: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
mNo edit summary |
||
Line 30: | Line 30: | ||
Then <math>D_y - D_x + [A,B] = 0.</math> [B-M] | Then <math>D_y - D_x + [A,B] = 0.</math> [B-M] | ||
Lax pair formulation | |||
<math> | |||
\psi_{xx} | |||
= \Bigl( | |||
-\frac{1}{2} \frac{\mu^2 z_{xx}}{(\mu + 1)(\mu - 1) z} | |||
+ \frac{1}{2} \frac{\mu z_{xy}}{(\mu + 1)(\mu - 1)} | |||
+ \frac{1}{4} \frac{\mu^2(3 \mu^2 - 2) z_x^2}{(\mu + 1)^2 (\mu - 1)^2 z^2} | |||
- \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z} | |||
+ \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{z \mu^2}{(\mu + 1)^2 (\mu - 1)^2} | |||
\Bigr) \psi | |||
</math> | |||
Revision as of 13:02, 6 December 2013
Equation
[B-M]
Zero curvature representation
Let
Then [B-M]
Lax pair formulation
References
[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007.