Example: Constant astigmatism equation: Difference between revisions

From Geometry of Differential Equations
Jump to navigation Jump to search
Michal (talk | contribs)
mNo edit summary
Michal (talk | contribs)
mNo edit summary
Line 3: Line 3:


<math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math>
<math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math>
[B-M]




==Zero curvature representation==
==Zero curvature representation==


[B-M]


<math>  
<math>  
Line 27: Line 27:
  \end{array}\right)
  \end{array}\right)
</math>
</math>
[B-M]




Line 32: Line 34:




H. Baran and M. Marvan,  
[B-M] H. Baran and M. Marvan,  
On integrability of Weingarten surfaces: a forgotten class,
On integrability of Weingarten surfaces: a forgotten class,
<i>J. Phys. A: Math. Theor</i> <b>42</b> (2009) 404007.
<i>J. Phys. A: Math. Theor</i> <b>42</b> (2009) 404007.

Revision as of 12:35, 6 December 2013

Equation

zyy+(1/z)xx+2=0.

[B-M]


Zero curvature representation

A=(18λ2+1)zxλz+18(λ2+1)zyλ14(λ+1)2zλ14(λ1)2zλ18(λ2+1)zxλz18(λ2+1)zyλ),

B=(18(λ2+1)zxλz2+18(λ2+1)zyλz14λ2+1λz14λ2+1λz18(λ2+1)zxλz218(λ2+1)zyλz)

[B-M]


References

[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007.