Example: Constant astigmatism equation: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
==Equation== | |||
<math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math> | <math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math> | ||
==Zero curvature representation== | |||
[B-M] | |||
<math> | <math> | ||
A = \left(\begin{array}{cc} | A = \left(\begin{array}{cc} | ||
\displaystyle \frac{1}{8} \frac{ | \displaystyle \frac{1}{8} \frac{\lambda^2 + 1) z_x}{\lambda z} + \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda} & | ||
\displaystyle \frac{1}{4} \frac{( | \displaystyle \frac{1}{4} \frac{(\lambda + 1)^2 \sqrt{z}}{\lambda} \\ \\ | ||
\displaystyle \frac{1}{4} \frac{( | \displaystyle \frac{1}{4} \frac{(\lambda - 1)^2 \sqrt{z}}{\lambda} & | ||
\displaystyle -\frac{1}{8} \frac{( | \displaystyle -\frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} - \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda} | ||
\end{array}\right), | \end{array}\right), | ||
</math> | </math> | ||
Line 18: | Line 21: | ||
<math> | <math> | ||
B = \left(\begin{array}{cc} | B = \left(\begin{array}{cc} | ||
\displaystyle \frac{1}{8} \frac{(- | \displaystyle \frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} + \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z} & | ||
\displaystyle \frac{1}{4} \frac{- | \displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} \\ \\ | ||
\displaystyle \frac{1}{4} \frac{- | \displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} & | ||
\displaystyle -\frac{1}{8} \frac{(- | \displaystyle -\frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} - \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z} | ||
\end{array}\right) | \end{array}\right) | ||
</math> | </math> | ||
==References== | |||
H. Baran and M. Marvan, | |||
On integrability of Weingarten surfaces: a forgotten class, | |||
<i>J. Phys. A: Math. Theor</i> <b>42</b> (2009) 404007. | |||
[[Category:Examples]] | [[Category:Examples]] |
Revision as of 12:34, 6 December 2013
Equation
Zero curvature representation
[B-M]
References
H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007.