Example: Constant astigmatism equation: Difference between revisions

From Geometry of Differential Equations
Jump to navigation Jump to search
Michal (talk | contribs)
mNo edit summary
Michal (talk | contribs)
mNo edit summary
Line 1: Line 1:
==Equation==
<math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math>
<math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math>


H. Baran and M. Marvan,
On integrability of Weingarten surfaces: a forgotten class,
<i>J. Phys. A: Math. Theor</i> <b>42</b> (2009) 404007.


The zero curvature representation as found in op. cit. is
==Zero curvature representation==
 
 
[B-M]


<math>
<math>  
A = \left(\begin{array}{cc}  
A = \left(\begin{array}{cc}  
\displaystyle \frac{1}{8} \frac{(a^2 + 1) z_x}{a z} + \frac{1}{8} \frac{(-a^2 + 1) z_y}{a} &  
\displaystyle \frac{1}{8} \frac{\lambda^2 + 1) z_x}{\lambda z} + \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda} &  
\displaystyle \frac{1}{4} \frac{(a + 1)^2 \sqrt{z}}{a} \\ \\
\displaystyle \frac{1}{4} \frac{(\lambda + 1)^2 \sqrt{z}}{\lambda} \\ \\
\displaystyle \frac{1}{4} \frac{(a - 1)^2 \sqrt{z}}{a} &  
\displaystyle \frac{1}{4} \frac{(\lambda - 1)^2 \sqrt{z}}{\lambda} &  
\displaystyle -\frac{1}{8} \frac{(a^2 + 1) z_x}{a z} - \frac{1}{8} \frac{(-a^2 + 1) z_y}{a}
\displaystyle -\frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} - \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda}
  \end{array}\right),
  \end{array}\right),
</math>
</math>
Line 18: Line 21:
<math>
<math>
B = \left(\begin{array}{cc}  
B = \left(\begin{array}{cc}  
\displaystyle \frac{1}{8} \frac{(-a^2 + 1) z_x}{a z^2} + \frac{1}{8} \frac{(a^2 + 1) z_y}{a z} &  
\displaystyle \frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} + \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z} &  
\displaystyle \frac{1}{4} \frac{-a^2 + 1}{a \sqrt{z}} \\ \\
\displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} \\ \\
\displaystyle \frac{1}{4} \frac{-a^2 + 1}{a \sqrt{z}} &  
\displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} &  
\displaystyle -\frac{1}{8} \frac{(-a^2 + 1) z_x}{a z^2} - \frac{1}{8} \frac{(a^2 + 1) z_y}{a z}
\displaystyle -\frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} - \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z}
  \end{array}\right)
  \end{array}\right)
</math>
</math>
==References==
H. Baran and M. Marvan,
On integrability of Weingarten surfaces: a forgotten class,
<i>J. Phys. A: Math. Theor</i> <b>42</b> (2009) 404007.




[[Category:Examples]]
[[Category:Examples]]

Revision as of 12:34, 6 December 2013

Equation

zyy+(1/z)xx+2=0.


Zero curvature representation

[B-M]

A=(18λ2+1)zxλz+18(λ2+1)zyλ14(λ+1)2zλ14(λ1)2zλ18(λ2+1)zxλz18(λ2+1)zyλ),

B=(18(λ2+1)zxλz2+18(λ2+1)zyλz14λ2+1λz14λ2+1λz18(λ2+1)zxλz218(λ2+1)zyλz)


References

H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007.