Example: Constant astigmatism equation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math> | <math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math> | ||
<math> | |||
A = \left(\begin{array}{cc} | |||
\displaystyle \frac{1}{8} \frac{(a^2 + 1) z_x}{a z} + \frac{1}{8} \frac{(-a^2 + 1) z_y}{a} & | |||
\displaystyle \frac{1}{4} \frac{(a + 1)^2 \sqrt{z}}{a} \\ \\ | |||
\displaystyle \frac{1}{4} \frac{(a - 1)^2 \sqrt{z}}{a} & | |||
\displaystyle -\frac{1}{8} \frac{(a^2 + 1) z_x}{a z} - \frac{1}{8} \frac{(-a^2 + 1) z_y}{a} | |||
\end{array}\right), | |||
</math> | |||
<math> | |||
B = \left(\begin{array}{cc} | |||
\displaystyle \frac{1}{8} \frac{(-a^2 + 1) z_x}{a z^2} + \frac{1}{8} \frac{(a^2 + 1) z_y}{a z} & | |||
\displaystyle \frac{1}{4} \frac{-a^2 + 1}{a \sqrt{z}} \\ \\ | |||
\displaystyle \frac{1}{4} \frac{-a^2 + 1}{a \sqrt{z}} & | |||
\displaystyle -\frac{1}{8} \frac{(-a^2 + 1) z_x}{a z^2} - \frac{1}{8} \frac{(a^2 + 1) z_y}{a z} | |||
\end{array}\right) | |||
</math> | |||
[[Category:Examples]] | [[Category:Examples]] |
Revision as of 07:15, 6 December 2013