Example: Constant astigmatism equation: Difference between revisions

From Geometry of Differential Equations
Jump to navigation Jump to search
No edit summary
Michal (talk | contribs)
No edit summary
Line 1: Line 1:
<math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math>
<math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math>
<math>
A = \left(\begin{array}{cc}
\displaystyle \frac{1}{8} \frac{(a^2 + 1) z_x}{a z} + \frac{1}{8} \frac{(-a^2 + 1) z_y}{a} &
\displaystyle \frac{1}{4} \frac{(a + 1)^2 \sqrt{z}}{a} \\ \\
\displaystyle \frac{1}{4} \frac{(a - 1)^2 \sqrt{z}}{a} &
\displaystyle -\frac{1}{8} \frac{(a^2 + 1) z_x}{a z} - \frac{1}{8} \frac{(-a^2 + 1) z_y}{a}
\end{array}\right),
</math>
<math>
B = \left(\begin{array}{cc}
\displaystyle \frac{1}{8} \frac{(-a^2 + 1) z_x}{a z^2} + \frac{1}{8} \frac{(a^2 + 1) z_y}{a z} &
\displaystyle \frac{1}{4} \frac{-a^2 + 1}{a \sqrt{z}} \\ \\
\displaystyle \frac{1}{4} \frac{-a^2 + 1}{a \sqrt{z}} &
\displaystyle -\frac{1}{8} \frac{(-a^2 + 1) z_x}{a z^2} - \frac{1}{8} \frac{(a^2 + 1) z_y}{a z}
\end{array}\right)
</math>


[[Category:Examples]]
[[Category:Examples]]

Revision as of 07:15, 6 December 2013

zyy+(1/z)xx+2=0.


A=(18(a2+1)zxaz+18(a2+1)zya14(a+1)2za14(a1)2za18(a2+1)zxaz18(a2+1)zya),

B=(18(a2+1)zxaz2+18(a2+1)zyaz14a2+1az14a2+1az18(a2+1)zxaz218(a2+1)zyaz)