Popowicz Z. Generalized Peakon's equations, talk at The Workshop on Geometry of PDEs and Integrability, 14-18 October 2013, Teplice nad Becvou, Czech Republic (abstract): Difference between revisions

From Geometry of Differential Equations
Jump to navigation Jump to search
Created page with "{{MeetingTalk | speaker = Ziemowit Popowicz | title = Generalized Peakon's equations | abstract = New Lax representation which generates the four component system of..."
 
No edit summary
Line 3: Line 3:
| title = Generalized Peakon's equations
| title = Generalized Peakon's equations
| abstract = New Lax representation which generates the four component system of equations will  be discussed. The Bi-Hamiltonian structure and conserved quantities of this system  will be discussed. Under the special reduction our system is reduced to the  two­component Qiao or Novikow equation which later could be reduced to the  Comassa-Holm or Degasperis-Procesi equations.
| abstract = New Lax representation which generates the four component system of equations will  be discussed. The Bi-Hamiltonian structure and conserved quantities of this system  will be discussed. Under the special reduction our system is reduced to the  two­component Qiao or Novikow equation which later could be reduced to the  Comassa-Holm or Degasperis-Procesi equations.
| slides =  
| slides = [[Media:Popowicz Z. Generalized Peakon's equations (presentation at  The Workshop on Geometry of PDEs and Integrability, 14-18 October 2013, Teplice nad Becvou, Czech Republic).pdf|Popowicz Z. Generalized Peakon's equations (presentation at  The Workshop on Geometry of PDEs and Integrability, 14-18 October 2013, Teplice nad Becvou, Czech Republic).pdf]]
| references =  
| references =  
| 79YY-MM-DD = 7986-89-85
| 79YY-MM-DD = 7986-89-85
}}
}}

Revision as of 12:57, 13 November 2013

Speaker: Ziemowit Popowicz

Title: Generalized Peakon's equations

Abstract:
New Lax representation which generates the four component system of equations will  be discussed. The Bi-Hamiltonian structure and conserved quantities of this system  will be discussed. Under the special reduction our system is reduced to the  two­component Qiao or Novikow equation which later could be reduced to the  Comassa-Holm or Degasperis-Procesi equations.

Slides: Popowicz Z. Generalized Peakon's equations (presentation at The Workshop on Geometry of PDEs and Integrability, 14-18 October 2013, Teplice nad Becvou, Czech Republic).pdf