Example: Constant astigmatism equation: Difference between revisions

From Geometry of Differential Equations
Jump to navigation Jump to search
Michal (talk | contribs)
mNo edit summary
Michal (talk | contribs)
gauge and parameter transformation
 
(7 intermediate revisions by 2 users not shown)
Line 14: Line 14:
A = \left(\begin{array}{cc}  
A = \left(\begin{array}{cc}  
\displaystyle \frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} + \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda} &  
\displaystyle \frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} + \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda} &  
\displaystyle \frac{1}{4} \frac{(\lambda + 1)^2 \sqrt{z}}{\lambda} \\ \\
\displaystyle \frac{1}{4} \frac{(\lambda + 1)^2 \sqrt{z}}{\lambda} \\[2ex]
\displaystyle \frac{1}{4} \frac{(\lambda - 1)^2 \sqrt{z}}{\lambda} &  
\displaystyle \frac{1}{4} \frac{(\lambda - 1)^2 \sqrt{z}}{\lambda} &  
\displaystyle -\frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} - \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda}
\displaystyle -\frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} - \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda}
Line 23: Line 23:
B = \left(\begin{array}{cc}  
B = \left(\begin{array}{cc}  
\displaystyle \frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} + \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z} &  
\displaystyle \frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} + \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z} &  
\displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} \\ \\
\displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} \\[2ex]
\displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} &  
\displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} &  
\displaystyle -\frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} - \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z}
\displaystyle -\frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} - \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z}
Line 29: Line 29:
</math>
</math>


Then <math>D_y - D_x + [A,B] = 0.</math> [B-M]
Then the constant astigmatism equation is equivalent to <math>D_y A - D_x B + [A,B] = 0.</math> [B-M]
 
Lax pair reformulation
 
<math>
\psi_{xx}
= \biggl(
-\frac{1}{2} \frac{\mu^2 z_{xx}}{(\mu + 1)(\mu - 1) z}
+ \frac{1}{2} \frac{\mu z_{xy}}{(\mu + 1)(\mu - 1)}
+ \frac{1}{4} \frac{\mu^2(3 \mu^2 - 2) z_x^2}{(\mu + 1)^2 (\mu - 1)^2 z^2}
- \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z}
+ \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{\mu^2 z}{(\mu + 1)^2 (\mu - 1)^2}
\biggr) \psi,
</math>
 
<math>
\psi_y =  -\frac{\mu}{z} \psi_x - \frac{1}{2} \frac{\mu z_x}{z^2} \psi.
</math>
 
Here <math>\lambda = (1 - \mu)/(1 + \mu)</math>, the corresponding gauge matrix being
 
<math>
\left(\begin{array}{cc}
\displaystyle 2 \frac{\sqrt{\lambda  \sqrt{z}}}{\sqrt{z}(\lambda + 1)} & 0 \\[2ex]
\displaystyle \frac{1}{4} \frac{(\lambda - 1)^2 \sqrt{\lambda  \sqrt{z}} z_x}{\lambda  z^{\frac{3}{2}}(\lambda + 1)}
  - \frac{1}{4} \frac{\sqrt{\lambda  \sqrt{z}}(\lambda - 1) z_y}{\lambda  \sqrt{z}} &
\displaystyle \frac{1}{2} \frac{\sqrt{z}(\lambda + 1)}{\sqrt{\lambda  \sqrt{z}}}
\end{array}\right).
</math>




Line 37: Line 65:
[B-M] H. Baran and M. Marvan,  
[B-M] H. Baran and M. Marvan,  
On integrability of Weingarten surfaces: a forgotten class,
On integrability of Weingarten surfaces: a forgotten class,
<i>J. Phys. A: Math. Theor</i> <b>42</b> (2009) 404007.
''J. Phys. A: Math. Theor'' '''42''' (2009) 404007, {{arXiv|1002.0989}}




[[Category:Examples]]
[[Category:Examples]]

Latest revision as of 12:15, 11 December 2013

Equation

zyy+(1/z)xx+2=0.

[B-M]


Zero curvature representation

Let

A=(18(λ2+1)zxλz+18(λ2+1)zyλ14(λ+1)2zλ14(λ1)2zλ18(λ2+1)zxλz18(λ2+1)zyλ),

B=(18(λ2+1)zxλz2+18(λ2+1)zyλz14λ2+1λz14λ2+1λz18(λ2+1)zxλz218(λ2+1)zyλz).

Then the constant astigmatism equation is equivalent to DyADxB+[A,B]=0. [B-M]

Lax pair reformulation

ψxx=(12μ2zxx(μ+1)(μ1)z+12μzxy(μ+1)(μ1)+14μ2(3μ22)zx2(μ+1)2(μ1)2z212μ3zxzy(μ+1)2(μ1)2z+14μ2zy2(μ+1)2(μ1)2+μ2z(μ+1)2(μ1)2)ψ,

ψy=μzψx12μzxz2ψ.

Here λ=(1μ)/(1+μ), the corresponding gauge matrix being

(2λzz(λ+1)014(λ1)2λzzxλz32(λ+1)14λz(λ1)zyλz12z(λ+1)λz).


References

[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007, arXiv:1002.0989