Example: Constant astigmatism equation: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
gauge and parameter transformation |
||
(10 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
==Equation== | |||
<math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math> | <math>\displaystyle z_{yy} + \bigl(1/z\bigr)_{xx} + 2 = 0.</math> | ||
[B-M] | |||
==Zero curvature representation== | |||
Let | |||
<math> | <math> | ||
A = \left(\begin{array}{cc} | A = \left(\begin{array}{cc} | ||
\displaystyle \frac{1}{8} \frac{( | \displaystyle \frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} + \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda} & | ||
\displaystyle \frac{1}{4} \frac{( | \displaystyle \frac{1}{4} \frac{(\lambda + 1)^2 \sqrt{z}}{\lambda} \\[2ex] | ||
\displaystyle \frac{1}{4} \frac{( | \displaystyle \frac{1}{4} \frac{(\lambda - 1)^2 \sqrt{z}}{\lambda} & | ||
\displaystyle -\frac{1}{8} \frac{( | \displaystyle -\frac{1}{8} \frac{(\lambda^2 + 1) z_x}{\lambda z} - \frac{1}{8} \frac{(-\lambda^2 + 1) z_y}{\lambda} | ||
\end{array}\right), | \end{array}\right), | ||
</math> | </math> | ||
Line 18: | Line 22: | ||
<math> | <math> | ||
B = \left(\begin{array}{cc} | B = \left(\begin{array}{cc} | ||
\displaystyle \frac{1}{8} \frac{(- | \displaystyle \frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} + \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z} & | ||
\displaystyle \frac{1}{4} \frac{- | \displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} \\[2ex] | ||
\displaystyle \frac{1}{4} \frac{- | \displaystyle \frac{1}{4} \frac{-\lambda^2 + 1}{\lambda \sqrt{z}} & | ||
\displaystyle -\frac{1}{8} \frac{(- | \displaystyle -\frac{1}{8} \frac{(-\lambda^2 + 1) z_x}{\lambda z^2} - \frac{1}{8} \frac{(\lambda^2 + 1) z_y}{\lambda z} | ||
\end{array}\right) | \end{array}\right). | ||
</math> | |||
Then the constant astigmatism equation is equivalent to <math>D_y A - D_x B + [A,B] = 0.</math> [B-M] | |||
Lax pair reformulation | |||
<math> | |||
\psi_{xx} | |||
= \biggl( | |||
-\frac{1}{2} \frac{\mu^2 z_{xx}}{(\mu + 1)(\mu - 1) z} | |||
+ \frac{1}{2} \frac{\mu z_{xy}}{(\mu + 1)(\mu - 1)} | |||
+ \frac{1}{4} \frac{\mu^2(3 \mu^2 - 2) z_x^2}{(\mu + 1)^2 (\mu - 1)^2 z^2} | |||
- \frac{1}{2} \frac{\mu^3 z_x z_y}{(\mu + 1)^2 (\mu - 1)^2 z} | |||
+ \frac{1}{4} \frac{\mu^2 z_y^2}{(\mu + 1)^2 (\mu - 1)^2} + \frac{\mu^2 z}{(\mu + 1)^2 (\mu - 1)^2} | |||
\biggr) \psi, | |||
</math> | </math> | ||
<math> | |||
\psi_y = -\frac{\mu}{z} \psi_x - \frac{1}{2} \frac{\mu z_x}{z^2} \psi. | |||
</math> | |||
Here <math>\lambda = (1 - \mu)/(1 + \mu)</math>, the corresponding gauge matrix being | |||
<math> | |||
\left(\begin{array}{cc} | |||
\displaystyle 2 \frac{\sqrt{\lambda \sqrt{z}}}{\sqrt{z}(\lambda + 1)} & 0 \\[2ex] | |||
\displaystyle \frac{1}{4} \frac{(\lambda - 1)^2 \sqrt{\lambda \sqrt{z}} z_x}{\lambda z^{\frac{3}{2}}(\lambda + 1)} | |||
- \frac{1}{4} \frac{\sqrt{\lambda \sqrt{z}}(\lambda - 1) z_y}{\lambda \sqrt{z}} & | |||
\displaystyle \frac{1}{2} \frac{\sqrt{z}(\lambda + 1)}{\sqrt{\lambda \sqrt{z}}} | |||
\end{array}\right). | |||
</math> | |||
==References== | |||
[B-M] H. Baran and M. Marvan, | |||
On integrability of Weingarten surfaces: a forgotten class, | |||
''J. Phys. A: Math. Theor'' '''42''' (2009) 404007, {{arXiv|1002.0989}} | |||
[[Category:Examples]] | [[Category:Examples]] |
Latest revision as of 12:15, 11 December 2013
Equation
[B-M]
Zero curvature representation
Let
Then the constant astigmatism equation is equivalent to [B-M]
Lax pair reformulation
Here , the corresponding gauge matrix being
References
[B-M] H. Baran and M. Marvan, On integrability of Weingarten surfaces: a forgotten class, J. Phys. A: Math. Theor 42 (2009) 404007, arXiv:1002.0989