Alexander Verbovetsky's Introductory lectures on the Geometry of Differential Equations
Jump to navigation
Jump to search
Spring 2012 (continuation of Joseph Krasil'shchik's lectures)
Short syllabus
- The Vinogradov spectral sequence
- Conservation laws
- Lagrangian formalism. Noether's theorem
- Tangent and cotangent coverings over equations
- Schouten bracket and Hamiltonian structures. Bi-Hamiltonian equations
Video records of the lectures
Via http://ium.mccme.ru/IUM-video.html
- Lecture 8 (2 May 2012) is missing
Recommended literature
- A. V. Bocharov, A. M. Verbovetsky, A. M. Vinogradov (editor), S. V. Duzhin, I. S. Krasil'shchik (editor), A. V. Samokhin, Yu. N. Torkhov, N. G. Khor'kova, and V. N. Chetverikov Simmetrii i zakony sokhraneniya uravnenij matematicheskoj fiziki, Factorial, Moscow, 2nd edition, 2005. (English translation: Symmetries and conservation laws for differential equations of mathematical physics, AMS, 1999.)
- Joseph Krasil'shchik and Alexander Verbovetsky, Geometry of jet spaces and integrable systems, J. Geom. Phys. 61 (2011), 1633-1674, arXiv:1002.0077