Doliwa A. Non-commutative integrable discrete systems of a geometric origin, talk at The Workshop on Geometry of PDEs and Integrability, 14-18 October 2013, Teplice nad Becvou, Czech Republic (abstract): Difference between revisions

From Geometry of Differential Equations
Jump to navigation Jump to search
Created page with "{{MeetingTalk | speaker = Adam Doliwa | title = Non-commutative integrable discrete systems of a geometric origin | abstract = Abstract: We investigate periodic reductions of ..."
 
No edit summary
Line 2: Line 2:
| speaker = Adam Doliwa
| speaker = Adam Doliwa
| title = Non-commutative integrable discrete systems of a geometric origin
| title = Non-commutative integrable discrete systems of a geometric origin
| abstract = Abstract: We investigate periodic reductions of Desargues maps, which lead to novel integrable multicomponent lattice systems being non-commutative, non-isospectral, and non-autonomous analogues of the modified Gel'fand-Dikii hierarchy. We show directly multidimensional consistency of the equations, and we present the corresponding systems of Lax pairs. We also provide a construction of related noncommutative rational maps which satisfy the Yang-Baxter property.
| abstract = We investigate periodic reductions of Desargues maps, which lead to novel integrable multicomponent lattice systems being non-commutative, non-isospectral, and non-autonomous analogues of the modified Gel'fand-Dikii hierarchy. We show directly multidimensional consistency of the equations, and we present the corresponding systems of Lax pairs. We also provide a construction of related noncommutative rational maps which satisfy the Yang-Baxter property.
| slides =  
| slides =  
| references =  
| references =  
| 79YY-MM-DD = 7986-89-85
| 79YY-MM-DD = 7986-89-85
}}
}}

Revision as of 14:57, 4 July 2013

Speaker: Adam Doliwa

Title: Non-commutative integrable discrete systems of a geometric origin

Abstract:
We investigate periodic reductions of Desargues maps, which lead to novel integrable multicomponent lattice systems being non-commutative, non-isospectral, and non-autonomous analogues of the modified Gel'fand-Dikii hierarchy. We show directly multidimensional consistency of the equations, and we present the corresponding systems of Lax pairs. We also provide a construction of related noncommutative rational maps which satisfy the Yang-Baxter property.