Seminar talk, 1 April 2009: Difference between revisions
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
Классифицируются интегрируемые системы третьего порядка в размерности <math>2+1</math>, обобщающие такие уравнения, как уравнения Кадомцева-Петвиашвили, Веселова-Новикова и Гарри Дима. Подход авторов основан на следующем наблюдении: бездисперсионный предел такого рода уравнений обладает большим числом многофазных решений, происходящих из так называемой гидродинамической редукции. Обратно, требование существования такой редукции даёт эффективный критерий классификации. Используемый в работе подход к классификации апеллирует также к теории возмущений (деформаций). С помощью метода гидродинамической редукции сначала классифицируются квазилинейные системы, получаемые как бездисперсионный предел солитонных уравнений, а затем, на основе некоторых предположений, восстанавливаются "дисперсионные деформации". Эта процедура позволяет получить полный список интегрируемых уравнений третьего порядка; некоторые из них, по-видимому, являются новыми. | Классифицируются интегрируемые системы третьего порядка в размерности <math>2+1</math>, обобщающие такие уравнения, как уравнения Кадомцева-Петвиашвили, Веселова-Новикова и Гарри Дима. Подход авторов основан на следующем наблюдении: бездисперсионный предел такого рода уравнений обладает большим числом многофазных решений, происходящих из так называемой гидродинамической редукции. Обратно, требование существования такой редукции даёт эффективный критерий классификации. Используемый в работе подход к классификации апеллирует также к теории возмущений (деформаций). С помощью метода гидродинамической редукции сначала классифицируются квазилинейные системы, получаемые как бездисперсионный предел солитонных уравнений, а затем, на основе некоторых предположений, восстанавливаются "дисперсионные деформации". Эта процедура позволяет получить полный список интегрируемых уравнений третьего порядка; некоторые из них, по-видимому, являются новыми. | ||
[[Category: Seminar]] | [[Category: Seminar | Seminar talk 2009-04-01]] | ||
[[Category: Seminar abstract]] | [[Category: Seminar abstract | Seminar talk 2009-04-01]] |
Revision as of 01:54, 4 April 2009
Докладчик: И.С.Красильщик
Тема: Обсуждение работы E.V. Ferapontov, A. Moro, V.S. Novikov, Integrable equations in 2+1-dimensions: deformations of dispersionless limits, arXiv:0903.3586
Аннотация:
Классифицируются интегрируемые системы третьего порядка в размерности , обобщающие такие уравнения, как уравнения Кадомцева-Петвиашвили, Веселова-Новикова и Гарри Дима. Подход авторов основан на следующем наблюдении: бездисперсионный предел такого рода уравнений обладает большим числом многофазных решений, происходящих из так называемой гидродинамической редукции. Обратно, требование существования такой редукции даёт эффективный критерий классификации. Используемый в работе подход к классификации апеллирует также к теории возмущений (деформаций). С помощью метода гидродинамической редукции сначала классифицируются квазилинейные системы, получаемые как бездисперсионный предел солитонных уравнений, а затем, на основе некоторых предположений, восстанавливаются "дисперсионные деформации". Эта процедура позволяет получить полный список интегрируемых уравнений третьего порядка; некоторые из них, по-видимому, являются новыми.