Seminar talk, 4 March 2009: Difference between revisions

From Geometry of Differential Equations
Jump to navigation Jump to search
New page: Speaker: Joseph Krasil'shchik Title: Review of some new arrivals to the arXiv ====References==== S.C. Anco and A. Dar, ''Classification of conservation laws of compressible isentro...
 
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:


Title: Review of some new arrivals to the arXiv
Title: Review of some new arrivals to the arXiv


====References====
====References====


S.C. Anco and A. Dar, ''Classification of conservation laws of compressible isentropic fluid flow in <math>n>1</math> spatial dimensions'', [http://arxiv.org/abs/0902.3405 arXiv:0902.3405]
S.C. Anco and A. Dar, ''Classification of conservation laws of compressible isentropic fluid flow in <math>n>1</math> spatial dimensions'', {{arXiv|0902.3405}}


A. Bihlo, ''Symmetries in atmospheric sciences'', [http://arxiv.org/abs/0902.4112 arXiv:0902.4112]
A. Bihlo, ''Symmetries in atmospheric sciences'', {{arXiv|0902.4112}}


A. Bihlo and R.O. Popovych, ''Lie symmetries and exact solutions of barotropic vorticity equation'', [http://arxiv.org/abs/0902.4099 arXiv:0902.4099]
A. Bihlo and R.O. Popovych, ''Lie symmetries and exact solutions of barotropic vorticity equation'', {{arXiv|0902.4099}}


C. Cao, J. Wu, ''Two regularity criteria for the 3D MHD equations'', [http://arxiv.org/abs/0903.2577 arXiv:0903.2577]
C. Cao, J. Wu, ''Two regularity criteria for the 3D MHD equations'', {{arXiv|0903.2577}}


V.A. Galaktionov, ''On blow-up shock waves for a nonlinear PDE associated with Euler equations'', [http://arxiv.org/abs/0902.1840 arXiv:0902.1840]
V.A. Galaktionov, ''On blow-up shock waves for a nonlinear PDE associated with Euler equations'', {{arXiv|0902.1840}}


V.A. Galaktionov and S.I. Pohozaev, ''Third-order nonlinear dispersion PDEs: shocks, rarefaction, and blow-up waves'', [http://arxiv.org/abs/0902.0253 arXiv:0902.0253]
V.A. Galaktionov and S.I. Pohozaev, ''Third-order nonlinear dispersion PDEs: shocks, rarefaction, and blow-up waves'', {{arXiv|0902.0253}}


F. Gungor, ''Infinite-dimensional symmetries of a two-dimensional generalized Burgers equation'', [http://arxiv.org/abs/0902.4156 arXiv:0902.4156]
F. Gungor, ''Infinite-dimensional symmetries of a two-dimensional generalized Burgers equation'', {{arXiv|0902.4156}}

Latest revision as of 12:23, 1 December 2009

Speaker: Joseph Krasil'shchik

Title: Review of some new arrivals to the arXiv

References

S.C. Anco and A. Dar, Classification of conservation laws of compressible isentropic fluid flow in spatial dimensions, arXiv:0902.3405

A. Bihlo, Symmetries in atmospheric sciences, arXiv:0902.4112

A. Bihlo and R.O. Popovych, Lie symmetries and exact solutions of barotropic vorticity equation, arXiv:0902.4099

C. Cao, J. Wu, Two regularity criteria for the 3D MHD equations, arXiv:0903.2577

V.A. Galaktionov, On blow-up shock waves for a nonlinear PDE associated with Euler equations, arXiv:0902.1840

V.A. Galaktionov and S.I. Pohozaev, Third-order nonlinear dispersion PDEs: shocks, rarefaction, and blow-up waves, arXiv:0902.0253

F. Gungor, Infinite-dimensional symmetries of a two-dimensional generalized Burgers equation, arXiv:0902.4156