Seminar talk, 8 December 2010: Difference between revisions

From Geometry of Differential Equations
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{Talk
{{Talk
| speaker = Valentina Golovko
| speaker = Valentina Golovko
| title = Integrability and Hamiltonian formalism in <math>2+1</math> dimensions
| title = Integrability and Hamiltonian formalism in <math>2+1</math> dimensions.&nbsp;Part&nbsp;1
| abstract = The talk will discuss the construction of recursion operators and Hamiltonian formalism in <math>2+1</math> dimensions by examples of KP and DS (Davey-Stewartson) equations, <math>(2+1)</math>-AKNS hierarchy, as well as the classification of scalar evolutionary integrable equations in <math>2+1</math> dimensions.
| abstract = The talk will discuss the construction of recursion operators and Hamiltonian formalism in <math>2+1</math> dimensions by examples of KP and DS (Davey-Stewartson) equations, as well as the classification of scalar evolutionary integrable equations in <math>2+1</math> dimensions.
| slides =  
| slides =  
| references = Athorne C. and Dorfman I.Ya. The Hamiltonian structure of the <math>(2+1)</math>-dimensional Ablowitz-Kaup-Newell-Segur hierarchy, J. Math. Phys. '''34''' (1993) 3507-3517, [http://dx.doi.org/10.1063/1.530040 doi:10.1063/1.530040]
| references = Athorne C. and Dorfman I.Ya. The Hamiltonian structure of the <math>(2+1)</math>-dimensional Ablowitz-Kaup-Newell-Segur hierarchy, J. Math. Phys. '''34''' (1993) 3507-3517, [http://dx.doi.org/10.1063/1.530040 doi:10.1063/1.530040]
Fokas A.S. and Santini P.M. Recursion operators and bi-Hamiltonian structures in multidimensions. I, Commun. Math. Phys. '''115''' (1988) 375-419, [http://dx.doi.org/10.1007/BF01218017 doi:10.1007/BF01218017], [http://projecteuclid.org/euclid.cmp/1104160997 http://projecteuclid.org/euclid.cmp/1104160997]
Fokas A.S. and Santini P.M. Recursion operators and bi-Hamiltonian structures in multidimensions. II, Commun. Math. Phys. '''116''' (1988) 449-474, [http://dx.doi.org/10.1007/BF01229203 http://dx.doi.org/10.1007/BF01229203], [http://projecteuclid.org/euclid.cmp/1104161422 http://projecteuclid.org/euclid.cmp/1104161422]


Novikov V.S. and Ferapontov E.V. On the classification of scalar evolutionary integrable equations in <math>2+1</math> dimensions, {{arXiv|1011.2145}}
Novikov V.S. and Ferapontov E.V. On the classification of scalar evolutionary integrable equations in <math>2+1</math> dimensions, {{arXiv|1011.2145}}

Latest revision as of 12:22, 10 December 2010

Speaker: Valentina Golovko

Title: Integrability and Hamiltonian formalism in dimensions. Part 1

Abstract:
The talk will discuss the construction of recursion operators and Hamiltonian formalism in dimensions by examples of KP and DS (Davey-Stewartson) equations, as well as the classification of scalar evolutionary integrable equations in dimensions.

References:
Athorne C. and Dorfman I.Ya. The Hamiltonian structure of the -dimensional Ablowitz-Kaup-Newell-Segur hierarchy, J. Math. Phys. 34 (1993) 3507-3517, doi:10.1063/1.530040

Novikov V.S. and Ferapontov E.V. On the classification of scalar evolutionary integrable equations in dimensions, arXiv:1011.2145