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Equations

The well known KdV-Burgers equation for flat waves is of the form

ut = −2uux + ε2uxx + δuxxx . (1)

Its cylindrical and spherical analogues are

ut +
1

2t
u = −2uux + ε2uxx + δuxxx . (2)

and

ut +
1

t
u = −2uux + ε2uxx + δuxxx . (3)

respectfully, [1] – [2]:
Blacktock D.T., On plane, cylindrical and spherical sound waves of
finite amplitude in lossless fluids, Techn. Rep. AF, 49 (638), 1965,
General Dynamics, Rochester, N.Y.
Sachdev P.L., Seebas R., Propagation of spherical and cylindrical
N-waves. Journ. of Fluid . Mech., 58, 197 (1973).
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Alternative presentations

The equations (1)–(3) may be put in the form

wt +
n

2t
w = γwxx − 2wwx + wxxx

by the change of variables t → t
√
δ, x → x

√
δ, u → −u

2 . Here

γ = ε2√
δ

and n = 0, 1/2, 1 for flat, cylindrical and spherical waves

correspondingly.
Still another form is obtained by the change
t = (0.5z + 1)2, u = v√

t
for (2);

and by t = ey , u = v
t for (3). The transformed equations are

vy = −2vvx + (1 + 0.5y)(ε2vxx + δvxxx) and

vy = −2vvx + ey (ε2vxx + δvxxx) respectfully.
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Initial value - boundary conditions

We consider the initial value - boundary problem: 1

u(x , 0) = f (x), u(a, t) = l(t), u(b, t) = 0, ux(b, t) = 0, x ∈ [a, b].
(4)

In the case δ = 0 (that is, for Burgers equation), it comes to

u(x , 0) = f (x), u(a, t) = l(t), u(b, t) = 0, x ∈ [a, b]. (5)

Below, l(t) = A sin(ωt) and b � 1.
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Traveling waves for flat KdVB

For t � 1 equations (2) and (3) tend to (1) as well as their
solutions.
Recall that the explicit form of traveling wave solutions for the flat
KdV-Burgers (1) is as follows

utws(x , t) =
3ε4 tanh2( ε

2(x−Vt−s)
10δ )

50δ
−

3ε4 tanh( ε
2(x−Vt−s)

10δ )

25δ
+

V

2
− 3ε4

50δ
(6)

Since u|x=+∞ = 0 the travelling wave has a velocity V = 6ε4

25δ .
The Burgers equation (δ = 0) has travelling wave solutions,
vanishing at x → +∞. They are given by the formula

uBtws(x , t) =
V

2

[
1− tanh

(
V

2ε2
(x − Vt + s)

)]
(7)

The head part of solutions to (2), (3) ultimately become similar to
the latter shock, shown below.
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Traveling wave for flat Burgers
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Typical examples, Cylindrical Burgers

Here we demonstrate typical graphs for cylindrical and spherical
Burgers waves, figure 1, 2.

Figure: 1. Cylindrical Burgers, ε = 0.1,
Left: u0 = sin t, t = 150. Right: u0 = sin 10t, t = 200.
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Typical examples, Spherical Burgers

Figure: 2. Spherical Burgers, u0 = sin t,
Left: ε = 0.1, t = 150 Right: ε2 = 0.3, t = 150
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Typical examples, Cylindrical KdV-Burgers

Figure: 3. Cylindrical KdV-Burgars,
Left: u0 = sin t, t = 300, ε = 0.1, δ = 0.001.
Right: u0 = 3 sin t, t = 100, ε = 0.1, δ = 0.001.
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Typical examples, Spherical KdV-Burgers

Figure: 4. Spherical KdV-Burgers, u0 = sin t,
Left: t = 300, ε = 0.1, δ = 0.001.
Right: x ↔ −x , t = 300, ε2 = 0.02, δ = 0.001 ε2 = 0.2
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ANIMATION, cylindrical Burgers


spK-300.avi
Media File (video/avi)



ANIMATION, cylindrical KdV-Burgers


spK-300.wmv
Media File (video/x-ms-wmv)



Overview of examples

For a wide variety of parameters of periodic border conditions,
the perturbation starts as a sawtooth profile.

Stronger viscosity effectively damps oscillation and may result
in absence of sawtooth effects.

Cylindrical wave moves faster and decay slower than the
spherical wave with the same periodical border condition.

Greater dispersion coefficient δ leads to a more prominent
oscillations at the bottom of each tooth (at the place of the
derivative breaks).

After the decay of initial oscillations, graphs become
monotonic declining convex lines, terminating by a constant
amplitude shock, that travels with constant velocity. This
velocity is numerically equal to the amplitude
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Symmetries

Since cylindrical and spherical equations explicitly depend on time,
their stock of symmetries is scarce.
The algebras of classical symmetries are generated by vector fields:

X =
∂

∂x
,

Y = x
∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
,

Z =
√

t
∂

∂x
+

1

4
√

t

∂

∂u
,

W = ln(t)
∂

∂x
+

1

2t

∂

∂u
.

It is not hard to find invariant solutions for X , Z and W
symmetries. Results on invariant solutions are collected in the
table.
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Symmetries and invariant solutions

For the Y symmetry an invariant solution must have a form
x−1f ( t

x2
) where f (ξ) is a solution of the nonlinear differential

equation

f ′′+
1

ε2ξ
ff ′+

(
2.5

ξ
− 1

4ξ2ε2

)
f ′+

1

2ξ2ε2
f 2+

(
1

2ξ2
− 1

4ξ3ε2

)
f = 0.

Equation Symmetries Invariant solutions

Cylindrical Burgers X ,Y ,Z C√
(t)
, (x+4C)

4t , x−1f ( t
x2

)

for some f

Cylindrical KdV-Burgers X ,Z C√
(t)
, (x+4C)

4t

Spherical Burgers X ,Y ,W C
t ,

x+2C
2t ln(t) , x−1f ( t

x2
)

for some f

Spherical KdV-Burgers X ,W C
t ,

x+2C
2t ln(t)



Conservation laws

First rewrite equations (1) – (3) into an appropriate, conservation
law form

[tn · u]t = [tn · (−u2 + ε2ux + δuxx)]x , (8)

n = 0, 1/2, 1 for flat, cylindrical and spherical cases
correspondingly.
Hence for solutions of the above equations we have∮

∂D

tn · [u dx + (ε2ux − u2 + δuxx) dt] = 0, (9)

where D is a rectangle

{0 ≤ x ≤ L, 0 ≤ t ≤ T}.



Conservation laws, continued

Bearing in mind the initial value/boundary conditions
u(x , 0) = u(+∞, t) = 0, for L = +∞ the integrals read

0∫
+∞

T nu(x ,T ) dx +

0∫
T

tn(ε2ux(0, t)− u2(0, t) + δuxx(0, t)) dt = 0.

Thus

+∞∫
0

u(x ,T ) dx =
1

T n

T∫
0

tn(−ε2ux(0, t) + u2(0, t)− δuxx(0, t)) dt.

(10)



Conservation laws, continued

Subsequently

1

T

+∞∫
0

u(x ,T ) dx =
1

T

T∫
0

1

T n
tn(−ε2ux(0, t)+u2(0, t)−δuxx(0, t)) dt.

(11)
The right-hand side of (11) can be computed in some simple cases
or estimated. Assume that ε2ux(0, t) + δuxx(0, t) is negligible
compared to u2(0, t). Then

1

T

+∞∫
0

u(x ,T ) dx ≈ 1

T

T∫
0

1

T n
tn(u2(0, t)) dt =

1

T n+1

T∫
0

tn(A sin2(ωt)) dt.

(12)



Simple examples

It follows that

lim
T→∞

1
T

T∫
0

A2 sin2(ωt) dt = lim
T→∞

A2

2ωT (ωT − 0.5 sin(2ωT )) =

A2

2 , n = 0;

lim
T→∞

1
T

T∫
0

1

T
1
2

t
1
2 (A sin2(ωt) dt =

lim
T→∞

A2

3
√
ω3T 3

(
(ωT )

3
2 − 3

4

√
ωT sin(2ωT ) + 3

8

√
π FresnelS(2

√
ωT√
π

)
)

=

A2

3 , n = 1
2 ;

lim
T→∞

1
T

T∫
0

1
T t(A2 sin2(ωt) dt =

lim
T→∞

A2

4ω2T 2

(
−ωT sin(2ωT ) + ω2T 2 + sin2(ωT )

)
=

A2

4 , n = 1.



Solutions with constant boundary conditions

Take u(0, t) = M. The graphs of solutions for M = 1 are shown
below.
For the resulting compression wave, ux(0, t) = 0 and the
right-hand side of (11) equals

1

T

T∫
0

M2

T n
tn dt =

M2

n + 1
(13)

As the figures 1 — 4 show, for periodic boundary condition, after
the decay of initial oscillations, graphs become monotonic convex
lines that begin approximately at the hight A/2 and breaking at
x = V · T and at the height V .

These monotonic lines are similar to the graphs or
constant-boundary solutions.
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Solutions with constant boundary conditions, continued

Figure: 5. Constant boundary solutions to Burgers equation,
ε = 0.1, t = 200. Left: Solid line — cylindrical, dots line — spherical.
Right: A trace of movement to the right of the spherical solution at
moments t = 37.5 · k , k = 1 . . . 6
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Self-similar or ”homothetic” solutions

Looking at the solution’s graph animation one can clearly see (eg,
on figure 5, right) that the monotonic part and its head shock
develops as a homothetic transformation of the initial
configuration. So we seek solutions of the form u(x , t) = y( xt ).
Substituting it into equations (1) – (3) we get the equation

− y ′
x

t2
+

ny

t
=

2yy ′

t
+
ε2y ′′

t2
+
δy ′′′

t3
, (14)

or

− ξy ′ + ny = 2yy ′ +
ε2y ′′

t
+
δy ′′′

t2
, (15)

for y = y(ξ) and n = 0, 1/2, 1.



For t large enough we may omit last two summands. It follows
that appropriate solutions of the above ordinary differential
equations are

u1(x , t) = C1, C1 ∈ R, n = 0, for flat waves equation;

u2(x , t) = −2 +
√

C2ξ + 4

C2
, C2 ∈ R, n =

1

2
, for cylindrical and

u3(x , t) = exp

(
LambertW

(
−ξ

2
e−

C3
2

)
+

C3

2

)
, C3 ∈ R, n = 1

for spherical equation.



Remark: Lambert function

The Lambert W function, also called the omega function or
product logarithm, is a multivalued function, namely, the branches
of the inverse relation of the function f (w) = wew , where w is any
complex number.
For each integer k there is one branch, denoted by Wk(z), which is
a complex-valued function of one complex argument.
W0 is known as the principal branch. When dealing with real
numbers the W0 = LambertW function satisfies

LambertW(x) · eLambertW(x) = x .

The Lambert W function, introduced in 1758, has numerous
applications in solving equations, mathematical physics, statistics,
etc.



Finding constants

Since, at the head shock, x = Vt and u = V we have the
condition y(V ) = V . It follows then that
C1 = V , C2 = − 3

V , C3 = ln(V ) + 1
2 .

For flat waves it corresponds to a travelling wave solution of the
classical Burgers equation.
For the cylindrical waves the monotonic part is given by

u2 =
1

3

(
2V + V

√
4− 3x

Vt

)
;

for spherical waves

u3 = V
√

e exp

(
LambertW

(
− x

2Vt
√

e

))
.

Note that

u2|x=0 =
4V

3
and u3|x=0 = V

√
e ≈ 1.65V . (16)



These formulas show that the velocity is proportional to the
amplitude at the start of oscillation. And it does not depend on
frequency that together with amplitude define the oscillating part
of solutions; more on that below.

The corresponding graphs visually coincide with the graphs
obtained by numerical modelling; for instance see comparison to
the solution at (t = 100) for the problem

ut = 0.01uxx − 2uux − u/t, u(0, t) = 1, u(75, t) = 0, u(x , 0) = 0
(17)

on the next figure, left.



Partial approximation

M

Figure: 6. Left: Solid line — solution to (17), dots line — its u2

approximation.
Right: Solid line— solution to (20), dots line — its ũ2 approximation;
both at t = 20.



Approximation

Yet the smooth part of the periodic boundary solution ends with a
break, which travels with a constant velocity and amplitude, very
much like a head of the Burgers’ travelling wave solution (7).

A rather natural idea is to truncate a homothetic solution,
multiplying it by a (normalized) Burgers TWS. Namely, put
or the cylindrical waves

ũ2 =
1

2
[1− tanh(

V

ε2
(x − Vt))] · 1

3

(
2V + V

√
4− 3x

Vt

)
; (18)

for spherical waves

ũ3 =
1

2
[1−tanh(

V

ε2
(x−Vt))]·V

√
e exp

(
LambertW

(
− x

2Vt
√

e

))
.

(19)



Head shock approximation

This construction produces an approximation of an astonishing
accuracy, see the previous figure, right; this figure corresponds to
the cylindrical Burgers problem

ε = 0.1, u(0, t) = sin 10t, u(10, t) = 0, u(x , 0) = 0. (20)

Moreover, it is evident that the graphs of ũ2, ũ3 neatly represent
the median lines of the approximated solutions on their whole
range.

By median we mean, for u(0, t) = sinωt,

M(x) = (2πn/ω)−1
∫ 2πn/ω

0
u(x , t) dt, n ∈ N, n� 1.



VIDEO, Central approximation I

Spherical KdV-Burgers, ε2 = 0.025, δ = 0.002. The change
x → −x results in perturbation moving to the left. Color lines
correspond to approximations at the moments t = 100, 200, 400.
See as the propagating perturbation coincides consequently with
these central approximation lines in the head part.


All-trace_1.wmv
Media File (video/x-ms-wmv)



VIDEO, Central approximation II

Spherical KdV-Burgers, ε2 = 0.025, δ = 0.002. The change
x → −x results in motion to the left.
See as the propagating perturbation coincides with the central
approximation dots line in the head part.


All.wmv
Media File (video/x-ms-wmv)



On assessment of the asymptotic quality

Now evaluate the trapezoid area under ũ2, ũ3 graphs:

For cylindrical equation∫ Vt

0

[
[1− tanh(V

ε2
(x − Vt))]

2

1

3

(
2V + V

√
4− 3x

Vt

)]
dx =

32

27
V 2t;

for spherical equation

∫ Vt

0

[
[1− tanh(V

ε2
(x − Vt))]

2
V
√

e exp

(
LambertW

(
−x

2Vt
√

e

))]
dx

=
V 2t · e

2
. (21)



Hence the mean value of the left-hand side of (11) can be
estimated as follows. Since the signal from x = 0 spreads, after
decay of oscillations, to the right with a constant speed V and the
same constant amplitude V at the shock, and it is very well
approximated by an appropriate homothetic solution, we get

1

T

+∞∫
0

u(x ,T ) dx =
1

T

VT∫
0

u(x ,T ) dx ≈

{
32
27V 2 in cylindrical case;

V 2·e
2 in spherical case,

(22)

This mean value can be also evaluated numerically. In the case
illustrated by figure 1 the direct numerical evaluation differs from
the estimation (22) by 1%.



Conservation law revisited

For constant-boundary waves, it follows from (13) that

M2

n + 1
=

{
32
27V 2 in cylindrical case;

V 2·e
2 in spherical case,

(23)

So the mean value M = M(0) at the start of oscillations (or in a
vicinity of the oscillator) is linearly linked to the velocity of the
head shock, which, in its turn, can be measured with great
accuracy by the distance passed by the head shock after a
sufficiently long time.

To find value M directly for an arbitrary border condition is a
tricky task, because the integrands ux and uxx of the right-hand
side of (11) have numerous breaks.
Numerical experiments show (eg, see figure 3), that for the
u|x=0 = A sin(t) boundary condition such a value is M ≈ A · a,
where a ≈ 0.467 is the mean value for 1 · sin(t) condition.

That is, at least numerically, initial mean value M depends on A
almost linearly.



Conclusion

We obtained simple explicit formulas describing the
monotonic part of the solution and its head break. These
approximate formulas have great accuracy. Moreover, their
graphs neatly represent the median lines of the approximated
solutions on their entire ranges. (By median line we mean the
level around which the periodical oscillations occur).

To obtain these approximations we used self-similar solutions
of the dissipationless and dispersionless KdV–Burgers equation
and a traveling wave solution of the flat Burgers equation.
Formulas depend on only one parameter: either on t he
velocity of the signal propagation or on the median value of
the solution in the vicinity of the periodic boundary.



Conclusion, continued & Acknowledgements

Some open questions remain. Our approximations are very
good for the one-parameter class of constant boundary
solutions. The existence of a one-parameter family of
solutions points to the existence of a suitable symmetry,
but the classical symmetry analysis was, so far, unhelpful.

Conservation laws allows us to assess the value of the
approximation’s parameter using the boundary condition,
but the resulting estimation is too rough.

The results of the talk are available at
https://www.preprints.org/manuscript/202012.0579/v1

This work was partially supported by the Russian Basic Research
Foundation grant 18-29-10013.

The graphs in this paper were obtained by numerical methods
using the Maple PDETools package.
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