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Let E be a manifold and n ∈ Z+. An n-dimensional distribution C on E is

an n-dimensional subbundle of the tangent bundle TE .

To de�ne an n-dimensional distribution C on E , we choose an n-dimensional

subspace Ca ⊂ TaE for each a ∈ E such that Ca depends smoothly on a.

A submanifold S ⊂ E is an integral submanifold of the distribution C
if S is tangent to Ca for each a ∈ S . That is, TaS ⊂ Ca for each a ∈ S .

A geometric approach to partial di�erential equations (PDEs):

For any PDE satisfying some non-degeneracy conditions, we will de�ne

a manifold E and an n-dimensional distribution C ⊂ TE such that

solutions of the PDE correspond to n-dimensional integral submanifolds.

Here n is the number of independent variables in the PDE.

E and C are constructed by means of the theory of in�nite jet bundles.

In this framework, PDEs and many structures related to PDEs (symmetries,

conservation laws, Bäcklund transformations, Lax representations) can be

studied geometrically in a coordinate-independent way.



Summary of the main ideas:

A PDE can be regarded as a manifold E with a distribution C ⊂ TE .
Solutions of the PDE correspond to integral submanifolds.

For any topological space X and each point a ∈ X ,

one has the fundamental group π1(X , a).

Similarly, for any analytic PDE E and each point a ∈ E ,
I will de�ne the fundamental Lie algebra π1(E , a).

Fundamental Lie algebras are new geometric invariants for PDEs.

Computing these algebras, we get interesting in�nite-dimensional Lie algebras.

Computations have been done in collaboration with G. Manno (Torino, Italy).

Using fundamental Lie algebras, one obtains new results on Bäcklund

transformations and zero-curvature representations (Lax representations).

The fundamental group π1(X , a) can be de�ned by means of topological
coverings of X .

The fundamental Lie algebra π1(E , a) can be de�ned by means of di�erential
coverings of the PDE E .



Summary of applications of fundamental Lie algebras
in the case of (1+1)-dimensional evolution PDEs:

Using fundamental Lie algebras, we obtain:

I necessary conditions for existence of a Bäcklund transformation (BT)

between two given PDEs,

I necessary conditions for existence of a nontrivial zero-curvature

representation (ZCR) for a given PDE.

These necessary conditions allow us to prove non-existence of BTs for some

pairs of PDEs and non-existence of nontrivial ZCRs for some classes of PDEs.

We consider the widest class of BTs (not necessarily of Miura type)
and the widest class of ZCRs. In particular, they may depend on
derivatives of arbitrary �nite order.

We �nd a normal form for ZCRs of a given (1+1)-dimensional evolution PDE

with respect to the action of the group of local gauge transformations.

We get invariant meaning for in�nite-dimensional Lie algebras and algebraic

curves related to some PDEs.



Di�erential coverings (A. Vinogradov, I. Krasilshchik)

Example: Miura transformation from mKdV equation to KdV equation

KdV =
{
ut = uxxx + 6uux

} u=vx−v2←−−−−− mKdV =
{
vt = vxxx − 6v2vx

}
This is a map from solutions v(x , t) of mKdV to solutions u(x , t) of KdV.

The preimage of each solution u(x , t) of KdV is a one-parameter family of

solutions v(x , t) of mKdV.

Informal description of di�erential coverings in coordinates:

E1=
{
F
(
xi , u(xi ),

∂u

∂xi
, . . .

)
=0
}
←− E2=

{
G
(
yi , v(yi ),

∂v

∂yi
, . . .

)
=0
}

u=ϕ
(
yi , v ,

∂v

∂yi
, . . .

)
, xi = ψ

(
ys , v ,

∂v

∂ys
, . . .

)
This is a map from solutions v(yi ) of E2 to solutions u(xi ) of E1.
u(xi ) and v(yi ) are vector-functions.

The preimage of each solution u(xi ) of E1 is a family of E2 solutions v(yi )
depending on a �nite number D of parameters.

D is the dimension of �bers of the covering.



E1 and E2 are connected by a Bäcklund transformation if there is E3
with a pair of coverings

E3

E2E1
����

This allows one to obtain solutions of E2 from solutions of E1:
take a solution of E1, �nd its preimage in E3, and project it to E2.

Example: vt = vxxx − 6v2vx + 6λvx

u=vx−v2+λ

xx

u=−vx−v2+λ

&&

ut =uxxx +6uux ut =uxxx +6uux

Trivial solution

u(x , t)=const
7→ 1-soliton

solution
7→ 2-soliton

solution
7→ . . .



How to de�ne a manifold E and a distribution C ⊂ TE for a given PDE.

Example: the in�nite prolongation of KdV.

In�nite jet space J∞ = (x , t, u, ux , ut , uxx , uxt , utt , . . . ).

Total derivative operators

Dx =
∂

∂x
+ux

∂

∂u
+uxx

∂

∂ux
+uxt

∂

∂ut
+. . . , Dt =

∂

∂t
+ut

∂

∂u
+uxt

∂

∂ux
+. . .

are commuting vector �elds on J∞.

Consider the submanifold E ⊂ J∞ determined by KdV and all its di�erential

consequences

ut =uxxx +6uux , utt =uxxxt +6utux +6uuxt , utx =uxxxx +6u2x +6uuxx , . . .

Dx , Dt are tangent to E and span a 2-dimensional distribution on E .

Similarly, a PDE with n independent variables can be regarded as a manifold E
with an n-dimensional distribution C (the Cartan distribution).

Solutions of the PDE correspond to integral submanifolds of this distribution.



Let (E1, C1) and (E2, C2) be PDEs, where C i ⊂ TE i is the Cartan distribution.

A smooth map τ : E2 → E1 is a di�erential covering if

τ is a bundle with �nite-dimensional �bers, τ∗ : TE2 → TE1, τ∗(C2) ⊂ C1,

∀ a ∈ E2 τ∗ : C2a −→ C1τ(a) is an isomorphism, C2a ⊂ TaE2, C1τ(a) ⊂ Tτ(a)E1

If C2a = TaE2 and C1τ(a) = Tτ(a)E1 then di�erential coverings are topological

coverings.

Topological coverings of a manifold M are determined by actions of the

fundamental group π1(M, a) for a ∈ M.

We need an analog of π1(M, a) for di�erential coverings of PDEs.

For any analytic PDE E and a ∈ E , we naturally de�ne a Lie algebra π1(E , a).
π1(E , a) is called the fundamental Lie algebra of E at a ∈ E .
The de�nition of π1(E , a) will be given later. First I describe some properties

of π1(E , a).

For any covering τ : E ′ → E , the algebra π1(E , a) acts on the �ber τ−1(a).
(Fibers are �nite-dimensional.)



For a topological covering τ : M ′ → M,

a′ ∈ M ′, a=τ(a′) ∈ M, π1(M ′, a′) ↪→ π1(M, a).

For a di�erential covering τ : E ′ → E , a′ ∈ E ′, a=τ(a′) ∈ E ,
π1(E ′, a′) is isomorphic to a subalgebra of π1(E , a) of �nite codimension.

Let E1 and E2 be connected by a Bäcklund transformation

E3
τ1

~~

τ2

  

E1 E2

a3 ∈ E3, a1 =τ1(a3) ∈ E1, a2=τ2(a3) ∈ E2

π1(E3, a3) ↪→ π1(E1, a1), π1(E3, a3) ↪→ π1(E2, a2)

Therefore, π1(E1, a1) and π1(E2, a2) have a common subalgebra of �nite

codimension. This is a powerful necessary condition for existence of a
Bäcklund transformation between E1 and E2.



In the considered examples (which include the KdV, nonlinear-Schrödinger,

Krichever-Novikov, Landau-Lifshitz equations),

the �main part� of π1(E , a) is an in�nite-dimensional Lie algebra of certain

matrix-valued functions on an algebraic curve.

Rational curve (genus = 0) for KdV and nonlinear-Schrödinger (NLS).

Elliptic curve for nonsingular Krichever-Novikov and Landau-Lifshitz.

The computation of π1(E , a) was done in collaboration with G. Manno.

Let E1 and E2 be some PDEs from these examples.
If the corresponding algebraic curves are not birationally equivalent,
then there is no Bäcklund transformation between E1 and E2.

For example, there is no Bäcklund transformation between KdV and

nonsingular Krichever-Novikov, between NLS and nonsingular Landau-Lifshitz.

One gets also an invariant meaning for algebraic curves related to the

above-mentioned PDEs.

Similar results can be obtained for other (1+1)-dimensional evolution PDEs

(e.g., the Kaup�Kupershmidt and Sawada�Kotera equations).



The fundamental group π1(M, a) can be de�ned using only (topological)

coverings of M, without using loops in M. We consider all coverings τ of M.

g ∈ π1(M, a) gives a transformation gτ : τ−1(a)→ τ−1(a) for each τ : M ′→M

For any M1 M2

M

ϕ
//

τ1 ��
τ2��

we have gτ2 ◦ ϕ
∣∣
τ−1

1
(a)

= ϕ
∣∣
τ−1

1
(a)
◦ gτ1 (1)

g ∈ π1(M, a) is uniquely determined by the collection of transformations{
gτ : τ−1(a)→ τ−1(a)

∣∣ τ is a covering of M
}
.

One can de�ne an element of π1(M, a) as a collection of such
transformations (for all coverings τ of M) satisfying (1).

To de�ne π1(E , a), replace transformations on �bers by vector �elds on �bers.

An element of π1(E , a) is de�ned as a collection of (formal) vector �elds:{
gτ is a vector �eld on τ−1(a)

∣∣ τ is a (formal) di�erential covering of E
}
,

such that for any E1 E2

E

ϕ
//

τ1 ��
τ2��

we have ϕ∗(gτ1) = gτ2 .



Example. Consider a (1+1)-dimensional scalar evolution equation

ut = F (x , t, u0, u1, . . . , ud), u = u(x , t), uk =
∂ku

∂xk
, u0 = u. (2)

Let V be a vector space. Then gl(V ) is the Lie algebra of linear maps V → V ,

and GL(V ) is the group of invertible linear maps V → V .

Let A = A(x , t, u0, u1, . . . , up) and B = B(x , t, u0, u1, . . . , up+d−1) be

functions with values in gl(V ).

The functions A, B form a zero-curvature representation (ZCR) if

Dx(B)− Dt(A) + [A,B] = 0,

where Dx , Dt are the total derivative operators corresponding to equation (2).

A gauge transformation is given by a function G = G (x , t, u0, u1, . . . , uk)
with values in GL(V ).

The functions Ã = GAG−1 − Dx(G ) · G−1 and B̃ = GBG−1 − Dt(G ) · G−1

satisfy Dx(B̃)− Dt(Ã) + [Ã, B̃] = 0, so Ã, B̃ form a ZCR.

The ZCR Ã, B̃ is gauge equivalent to the ZCR A, B .



E is the manifold with coordinates x , t, uk . Let a = (x =0, t=0, uk =0) ∈ E .

After a suitable gauge transformation on a neighborhood of a ∈ E , we get

∂Ã

∂us

∣∣∣∣
uk=0, k≥s

= 0 ∀ s ≥ 1, Ã
∣∣∣
uk=0, k≥0

= B̃
∣∣∣
x=0, uk=0, k≥0

= 0, (3)

Dx(B̃)− Dt(Ã) + [Ã, B̃] = 0. (4)

This is a normal form for zero-curvature representations (ZCRs) with respect

to the action of the group of gauge transformations.

Consider the Taylor series of the functions Ã = Ã(x , t, u0, u1, . . . , up) and

B̃ = B̃(x , t, u0, u1, . . . , up+d−1) at the point a ∈ E .

So we view Ã and B̃ as power series in the variables x , t, uk .

We regard the coe�cients of the power series Ã, B̃ as abstract symbols.

Let F p(E , a) be the Lie algebra generated by these coe�cients. Relations for

these generators are provided by (3), (4).



Representations of F p(E , a) classify (up to gauge equivalence) ZCRs of the form

A=A(x , t, u0, u1, . . . , up), B =B(x , t, u0, u1, . . . ), Dx(B)−Dt(A)+[A,B]=0

F p(E , a) is de�ned also for (1+1)-dimensional multicomponent evolution PDEs,

for any point a ∈ E .

We get a sequence of surjective homomorphisms of Lie algebras

· · · → F p(E , a)→ F p−1(E , a)→ · · · → F 1(E , a)→ F 0(E , a).

The fundamental Lie algebra π1(E , a) of the considered evolution PDE is

isomorphic to the inverse limit of this sequence.

ZCRs of the form A = A(u0), B = B(u0, u1, . . . ) are described by

representations of the Wahlquist-Estabrook prolongation Lie algebra, which

does not have any coordinate-independent meaning.

The Wahlquist-Estabrook prolongation method does not use gauge equivalence.

Because of this, the Wahlquist-Estabrook prolongation method cannot classify

general ZCRs A=A(x , t, u0, u1, . . . , up), B =B(x , t, u0, u1, . . . ).



If a (1+1)-dimensional (multicomponent) evolution PDE E is S-integrable,
then there are p ≥ 0 and a ∈ E such that the Lie algebra F p(E , a) is

in�nite-dimensional and is not solvable.

This gives a necessary condition for S-integrability of E.
This approach is applicable to all S-integrable PDEs, including ones
which do not possess higher local symmetries and conservation laws.

For many evolution equations E , we can �nd q ≥ 0 such that the kernel of the

surjective homomorphism F p(E , a)→ F q(E , a) is solvable for all p > q.
In this case, if F q(E , a) is solvable then the equation is not S-integrable.
Example. For equations ut = u5 + f (x , t, u0, u1, u2, u3), we have q = 1.

If ∂
3f
∂u3

3

6= 0, then F p(E , a) is nilpotent for all p, and the equation is not

S-integrable. The same holds for the equation ut = u5 + uu1.

For any PDE E , solvable ideals of F p(E , a) are not important for applications.

For the KdV, NLS, Krichever-Novikov (KN), Landau-Lifshitz (LL) equations,

if we kill all solvable ideals of F p(E , a), we get in�nite-dimensional Lie algebras

of some sl2-valued and so3-valued functions on algebraic curves.

Rational curve (genus = 0) for KdV and NLS. Elliptic curve for KN and LL.

In the computation, we used some results of H. van Eck, P. Gragert,

G. Roelofs, R. Martini on Wahlquist-Estabrook prolongation algebras.



An m-component generalization of the Landau-Lifshitz equation was

introduced by I. Golubchik and V. Sokolov. It possesses a ZCR parametrized

by the following algebraic curve of genus 1+(m−3)2m−2

C =
{

(λ1, . . . , λm) ∈ Cm
∣∣ λ2i − λ2j = rj − ri , i , j = 1, . . . , n

}
, (5)

where r1, . . . , rm are constants satisfying ri 6= rj for i 6= j .

For this PDE with m ≥ 4, the Lie algebras F k(E , a) have the following

structure (S. Ig., J. van de Leur, G. Manno, V. Trushkov):

F 0(E , a) is isomorphic to the in�nite-dimensional Lie algebra L of certain

matrix-valued functions on the curve (5). For any k ≥ 1, there is a surjective

homomorphism F k(E , a)→ L⊕ som−1(C) with solvable kernel.

(The algebra L was considered before by I. Golubchik, V. Sokolov, T. Skrypnyk

in a di�erent context.)

F 0(E , a) is given by generators p1, . . . , pm and the relations

[pi , [pi , pk ]]−[pj , [pj , pk ]] = (rj−ri )pk , i 6= k , j 6= k , i , j , k = 1, . . . , n. (6)

[pi , [pj , pk ]] = 0, i 6= j 6= k 6= i , i , j , k = 1, . . . , n.

Relations (6) are very similar to equations (5). Using only the PDE, we get

relations (6), which suggest to consider the curve (5).



We have methods to describe di�erential coverings for (1+1)-dimensional

evolution PDEs, using actions of Lie algebras. Miura-type transformations

(di�erential substitutions) are a particular class of di�erential coverings.

We have developed a method to construct (and to classify in some cases)

Miura-type transformations (MTs) for (1+1)-dimensional evolution PDEs of

the form ut = F (u0, u1, . . . , ud), u = u(x , t), uk = ∂ku
∂xk

, using zero-curvature

representations (ZCRs) and actions of Wahlquist�Estabrook prolongation Lie

algebras (WE algebras). We study MTs which do not change x , t.
Some results are presented in S.Ig., J. of Phys A 38 (2005).

Our method is a generalization of a result of V.G. Drinfeld and V.V. Sokolov

on MTs for the KdV equation: V.G. Drinfeld, V.V. Sokolov, �On equations that

are related to the Korteweg�de Vries equation,� Soviet Math. Dokl. 32 (1985).

Idea: Consider a PDE E of the above type, a ZCR Dx(B)−Dt(A)+[A,B]=0,

where A,B are functions on E with values in a Lie algebra g, and an action

ϕ : g→ D(W ) on a manifold W . This gives the di�erential covering

E ×W → E with the total derivatives Dx + ϕ(A), Dt + ϕ(B) on E ×W .

For a scalar PDE E , any MT is of this type with g equal to the WE algebra.

Classi�cation of MTs for some scalar PDEs. (For example, PDEs of KdV type.)

Construction of MTs for multicomponent PDEs.



α,β ∈ Z, α ≤ β. We study di�erential-di�erence equations of the form

ut = F(uα, uα+1, . . . , uβ), (1)

u = u(n, t) is a vector-function of an integer variable n and a real or complex

variable t. ut = ∂t(u) and ui = u(n + i , t) for i ∈ Z. u0 = u.
Equation (1) must be valid for all n ∈ Z, so (1) encodes an in�nite sequence of

di�erential equations

∂t
(
u(n, t)

)
= F

(
u(n + α, t), u(n + α + 1, t), . . . , u(n + β, t)

)
, n ∈ Z.

Consider another di�erential-di�erence equation of similar type

vt = F̃(vα̃, vα̃+1, . . . , vβ̃) (2)

for a vector-function v = v(n, t) and some integers α̃ ≤ β̃.
A Miura-type transformation (MT) from equation (2) to equation (1) is

determined by an expression of the form

u = f (vp, vp+1, . . . , vr ), p, r ∈ Z, p ≤ r , (3)

if v satis�es (2) then u given by (3) satis�es (1).



Let S be the shift operator which replaces n by n + 1 and ui by ui+1 in all

considered functions.

Let d ∈ Z+. Let M = M(ui , . . . , λ) and U = U(ui , . . . , λ) be d × d
matrix-functions depending on a �nite number of the variables ui and a

complex parameter λ.
Suppose that the matrix M is invertible, and the equation

∂t(M) = S(U)M −MU (4)

holds as a consequence of (1).

Such a pair (M, U) is an analog of a zero-curvature (Lax) representation for

di�erential-di�erence equations.

Such (M, U) often arise from Darboux transformations of PDEs.

The pair (M, U) is a Darboux-Lax representation (DLR) for equation (1).

This implies that the auxiliary linear system

S(Ψ) = MΨ,

∂t(Ψ) = UΨ
(5)

is compatible modulo (1). Ψ = Ψ(n, t) is an invertible d × d matrix-function.



We have translated some parts of the theory of coverings and MTs from the

PDE case to the case of di�erential-di�erence equations.

The total derivative operators Dx , Dt in the PDE case get replaced by the

operators S, Dt in the di�erential-di�erence case.

We have developed a method to construct MTs for di�erential-di�erence

(lattice) equations, using Lie group actions associated with Darboux�Lax

representations of such equations. The considered examples include Volterra,

Narita�Itoh�Bogoyavlensky, Toda, and Adler�Postnikov lattices.

Applying our method to these examples, we have obtained new integrable

nonlinear di�erential-di�erence equations connected with these lattices by MTs.

G. Berkeley, S. Ig., �Miura-type transformations for lattice equations and Lie

group actions associated with Darboux�Lax representations,� J. of Phys. A 49
(2016).



A new MT for the Narita�Itoh�Bogoyavlensky lattice. p ∈ Z+, c1, c2 ∈ C.

ut = u
( p∑

k=1

uk −
p∑

k=1

u−k

)
, (6)

u =
(c1v2p − c2)

(∏
2p−1
j=p vj

)∏p−1
i=0

(
c2
(∏i+p−1

j=i vj
)
− c1

)
∏p

i=0

(
− 1 +

∏i+p
j=i vj

) , (7)

vt =
v(c2 − c1v)

(∏p
i=1

v−i −
∏p

i=1
vi
)∏p−1

i=0

(
c2
(∏i

j=i+1−p vj
)
− c1

)
∏p

i=0

(
− 1 +

∏i
j=i−p vj

) (8)


