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Introduction: DGA

A— differential graded algebra (DGA) over the field K:
o A= @/@oAk, dega = k, a € A*.
@ associative multiplication A : AX x A" — A Kk > 0.
o differential d4 : A — A1 k>0, d?>=0.
e aNb=(-1)bAa,ac A be A
e d(anb)=daAb+(—1)aAdb,aec A* (the Leibniz rule).
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Introduction: Homomorphisms and cohomology

o Let (A, dy) and (B, ds) two DGA's and f : A — B — K—linear
map such that:

o f(A¥) c BX k>0 and
f(anb) = f(a)Af(b), ds(f(a)) = f(da(a)), f— a
homomorphism of differential graded algebras.

o HX(A,dy) := Ker(dy : AK — A1) /Im(dy : A1 — A¥) and
if f - DGA-homomorphism then
*:H* (A, da) = H*(B, dg, f*[a] = [f(a)].

e If H°(A,d4) =K, then A— connected; if , in addition
H(A,d4) = 0 then A— simply connnected.

o If there exists a surjection € : A — K of DGA’s where
deg(k) =0,k € K and dx ~ 0 then A— augmented.

@ Main example: X—smooth manifold, A = Q*(X)— smooth
differential forms - DGA with d4 = dpgr. X— simply connected
then Q*(X)- also simply connected.
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Introduction: Minimal DGA

Let K=R.
o A DGA (M, dy) is minimal if:
e M°=TR and d(M%) =0.

o M™T = ®y-oMFK is freely generated by homogeneous elements

Xl y Xy .. 6. MT =N < x1,x,...> for each k > 0 there
exist finitely many such generators degree k, and degx; < degx;,
if i <.

o differential d is reducible: dx; € N(xi, ..., x;1), i > 1.

e M—simply connected iff M* = 0. In this case degx; > 2 and
the reducibility means dM* c M+ A MT.
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Introduction: Minimal model of DGA

An algebra (M, dy,) is called a minimal model for an algebra (A, dy4)
if

@ the algebra (M, dy() is minimal;

@ there exists a homomorphism h : (M, dy) — (A, d4) inducing
an isomorphism of cohomology rings:

h* - H*(./\/l,dM) — H*(A, dA)

(h*—quasi-isomorphism)
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Introduction: Existence and example

D. Sullivan (1974):

If (A, dx) is a simply connected DGA such that dimH*(A) < oo for
each k > 0, then there exists a unique (up to isomorphisms) minimal
model for A.

Example

X— a simply connected compact manifold; A = Q*(X); The minimal
model Mx for A (also called the (real) minimal model for X) is
isomorphic to H*(X,R) because

H*(X,R) ~ H*(Q2(X)) =

h: (Mx,du) = (Q(X),dx) = h" : H'(Mx) ~ H*(X,R).
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Introduction: Heisenberg group

Let G be a group of 3 x 3— real upper-triangular matrices
1 x y
01 z
0 01

Consider Heisenberg nilmanifold X = G/I' = G/Gz;with Gz— the
subgroup with x,y,z € Z;

7X7y7Z€R

wy; = dx,wpy = dy,w3 = xdy — dz.

The minimal model M is generated by the elements x;, x, x3 of
degree 1 such that

dx; = dxo = 0:dxz = x1 A\ xo.
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Introduction: Formality

We associate with each minimal algebra (M, d) its cohomology ring
H*(M), considering as a DGA with differential zero: (H*(M), 0).
The minimal algebra M is said to be formal if

f : (M, d) — H*(M,0) inducing an isomorphism

f*: H*(M) ~ H*(M) (in other words (M, d)— minimal model for
its cohomology ring).

A DGA (A, d4)— is formal if its minimal model M(.A) is formal. It
means that H*(A, d4) = H*(M(A), du).

If Q(X) for smooth X is formal, then we say that X is formal.
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Introduction: Example formality

Example

Let X be a K&hler simply connected compact. Then (from
dd®—lemma) X is formal:

d€ = I71dl; (Q9(X), d°) € (Q°(X), d); (2°(X)., d)/(2°(X), d)~
quotient dd“—lemma implies two quasi-isomorphisms:

(Q(X), d) = (2(X), d°) = (Q(X), d)/(Q"(X), d°)

and the differential on (Q2*(X), d)/(2*(X), d°) vanishes.
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Introduction: Example non-formality

Example

One example of a non-formal algebra is the minimal model for the
three- dimensional Heisenberg nilmanifold X = G/G.
Indeed, if there exists a homomorphism

f (MX7 d) — (H*(X),O)
that induces an isomorphism of the cohomology rings, then
f(x1) #0,f(x3) =0= f(x3 A x3) =0.

But the element x; A x3 realizes a non-trivial cohomology class.
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A —algebras. Formal definition

definition
Let K be a field and A a Z—graded K—vector space, A = Dz A’
An A, —algebra structure on A is a family of graded linear maps
m, : A" — A, n > 1, such that the degree of m, is 2 — n and the
identities ("Stasheff Identities"(SI(n)):

> (1m0 (id® © me ® id®P) =0

r+s+p=n
r,p=>0;5>1

hold for all n > 1.

Koszul's sign rule: if we evaluate on specific elements of a tensor
product space.

(f @ g)(x®y) = (—1)™e&l =N f(x) & g(y),

where fand g are homogeneous maps and x, y are homogeneous
elements in the domains of fand g respectively. 12/27



Some consequences of the definition

elfn=1r,p=0and s=1 m;is adegree 1 map, and SI(1) is
simply my o my = 0, that is, (LA, my) is a cochain differential
complex.

e If n =2, identity SI(2) implies that m, : A%2 — A is a bilinear
map that behaves like a multiplication and that the differential
m; satisfies the graded Leibnitz rule with respect to m;.

@ This multiplication is not necessarily associative, as it follows
from SI(3), namely

my o (my® id) — myo (id®@ my) = (1)
myomg+ mzo (id?@m; +id @ m @ id + m ® id®?). (2)

@ We note that if m3 = 0, then (A, my, my) is a DGA with a
differential of degree 1.
@ Every DGA is an Ay -algebra with my=my =... =0.
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e An A, —algebra is minimal if m; = 0;

@ Let A and B be two A, — algebras; An A,,—morphism
f: A— B— afamily f, : A®" — B of degree 1 — n linear maps,
n > 1 such that

> (1) P (id® @ me @ id®P) = (3)

r+s+p=n
r,p>0;s>1

Yo (rm(fy®... 0 f), (4)

0<r<n
n=iy+...+ir

being s = .51 k(ip_i — 1).
@ A quasi-isomorphism f; : (A, my 1) — (B, my ) of cochain
complexes is called A, —algebra quasi-isomorphism.
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Informal origins of Ay

@ Let us first consider the following homotopy data of chain
complexes:

pC (A da) == (H. )
IdA— /p: dAh+hdA s

where i and p are morphisms of chain complexes and where h is
a degree +1 map. It is called a homotopy retract, when the map
i is a quasi-isomorphism, i.e. when it realizes an isomorphism in

homology. If moreover pi = Idy, then it is called a deformation

retract.

@ Is it possible to transfer the associative algebra structure from A
to H through the homotopy data in some way ?
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Associativity

e m: A®? — A, such that m(m(a® b) ® c) = m(a® m(b ® c)).
@ Define a binary operation p : H®2 — H, such that pu := pmi®?

o If | € Iso(H,.A) and i~ = p then answer: yes.

@ But in general ip = H mod h— homotopy. The associativity
relation is equivalent to the vanishing of the associator in
Hom(H®3, H)

Y

v
\?'?“Y'y

p
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Associativity up to homotopy

@ This mapping space becomes a chain complex when equipped
with the usual differential map O(f) := dyf — (—1)'f|dyesf. We
introduce the element ps3 :

i i

N

N
oy

@ deg(u3) = 1, since the maps i, p, and m have degree 0 and h is
a map of degree 1.

Proposition

The product py is associative up to the homotopy u3 in the chain
complex (Hom(H®3, H), ) :

- Y-
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Kadeishvili transfer theorem

@ The next step: to check whether 1, and p3 satisfy some relation.
The answer is again yes, they satisfy one new relation but only

up to yet another homotopy, which is a linear map j4 of degree
+2 in Hom(H®*, ). And so on...

@ Resume: A, — algebra or an associative algebra up to homotopy,
also called homotopy associative algebra , is a chain complex
(A, d) endowed with a family of operations ,: A®" — A of
degree n — 2 for any n > 2, satisfying the aforementioned
relations.

The operations {ji,}, n > 2 defined on H from the associative
product m on A by the above formulae form an A..—algebra
structure on H.
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Merkulov's transfer theorem-assumptions

A, d,[,]— DGA and

[0, 9] = ¢ 0 1hp — (—1)de8?d¥4) 6 h—super-commutator;
Assumption:

@ there exists a subcomplex W C A, and a vector space
homomorphism @ : A — A of degree —1, such that the image
of the mapId — [d,Q] : A — Aisin W.

@ Define A\, : A®" — A of degree 2 — n,n > 1, as follows:

@ ); is determined only by the condition Q\; = —Id;
°

X(vew)=v-w, (5)
A= s+p=ns,p>1-1)""X(QA® Q). n>2, (6)
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Merkulov's transfer theorem

Theorem (S. Merkulov)

Let (A, d) be a differential graded algebra and the Assumption
holds. Define linear maps m, : W®" — W, where n > 1, via

o my = d7
Q@ m,=(Id—[d,Q]) o \,, for > 2, in which \, are the maps

constructed above. The maps m,, satisfy the identities Sl(n), and

therefore they determine an A.,—algebra structure on the
complex W.
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Merkulov's theorem: details

Let A= @pGZ AP be a differential graded algebra with differential d
of degree 1. BP and ZP - are the spaces of coboundaries and cocycles
of AP respectively. Then, there are subspaces HP of ZP and LP of AP
such that

ZP=BP®HP and AP=ZPalP=B°eHPaLP. (7)

We set W = P, HP and we define the map Q as follows:
QP : AP — AP~ s given by

Q°lir = Q°lur =0, Q°lge = (dH|ppt) .

We note that the map d?~!|;,-1 is indeed one-to-one, since
dP~1(a) =0 only if a € ZP7, but ZP~1 N [P~ = {0}.
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Diagram shows how d acts:

0 0 0
@ /@/@
Bn—l B" Bn+1
s> SY S>)
f{n—l H" f{”+1
S¥ ©® s>

Ln—l Ln Ln+1
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Diagram shows the action of Q:

Qn An Qn+1 AIH-].

,4"_1
I I I
0 0 0
s> SY S>)
anl B" BnJrl
s> ©® s>
anl H" Hn+1
s> ©® ©®

Ln—l L" Ln+1
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The map Q determines an homotopy between Id and pr, where

pr : A — A is the projection from A onto W: we have

Id — pr = d Q + Q d and therefore Merkulov's Assumption holds
with W and Q as above. Note that d|y» = 0, so, the operation m; of
the Merkulov's Theorem is identically zero and therefore the
operation ms is an associative multiplication on W. We identify the
complex W with the cohomology of A, and so hereafter we write
HA instead of W.
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Corollary

Theorem (4)

Consider the functions X\, defined in (5,6).

We set m, = pr o \, : HA®" — HA for n > 2. Then,
(HA,0,my, ms,...) is an Ax-algebra and f = {—Q \,}n>1 is a
quasi-isomorphism of A..-algebras between HA and A.

An A..-algebra constructed as above is called a Merkulov model or a
minimal model of the DGA A, in analogy with D. Sullivan’s minimal
models for DGA introduced in the context of rational homotopy
theory. In the context of A,.-algebras, being quasi-isomorphic is a
transitive property, and therefore all Merkulov models of A (which
obviously depend on the choice of the subspaces HP and LP
introduced above) are quasi-isomorphic as A.-algebras.
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Merkulov's minimal model: applications

@ M— compact Kahler, «, 5d—closed. But 6(a A 3) # 0

@ How to cure it? - to define o 5 := (a A ) |kerd. But o— is no
more associative.

@ Merkulov: o— homotopy associative!
There are various A.,— structures on M :
© real Hodge-de Rham - W := Kerd!, Q :==d. - G4 - A;
© complex Hodge-Dolbeault -W := Kero*, Q :=id - Gy - A,
© If M—Calabi-Yau there is the third A, —structure related to
Barannikov-Kontsevich DGA
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NEVER DISCUSS
INFINITY WITH A
MATHEMATICIAN.

YOU'LL NEVER

HEAR THE END

OF IT

Happy and peaceful New Year!
Merry Xmass!

Happy Hanukkah!
Cnacnbo 3a BHUMaHuNe!
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