Towards a theory of homotopy structures for differential equations: First definitions and examples -1

Volodya Rubtsov

LAREMA 6093 du CNRS, Université d'Angers GDT in Paris and IITP RAS Moscow volodya@univ-angers.fr

Joseph Krasil'schshik Seminar "Geometry of Differential Equations, IMU, Moscow, December, 18, 2024 г.

Sources

This talk is based on:

Journal of Differential Equations Volume 413, 25 December 2024, Pages 805-827

2/27

Towards a theory of homotopy structures for differential equations: First definitions and examples

Jean-Pierre Magnot ^{a b} 🖾 , Enrique G. Reyes ^c 🕺 🖾 , Vladimir Rubtsov ^{a d e} 🖾

Some picture files are due to: Bruno Vallette "Algebra + Homotopy = Operad" (arXiv: 1202.3245 v 1 [math. AT])

- $\mathcal{A}-$ differential graded algebra (DGA) over the field \mathbb{K} :
 - $\mathcal{A} = \bigoplus_{k \ge 0} \mathcal{A}^k$, $\deg a = k$, $a \in \mathcal{A}^k$.
 - associative multiplication $\wedge : \mathcal{A}^k \times \mathcal{A}^l \to \mathcal{A}^{k+l}, k, l \ge 0.$
 - differential $d_{\mathcal{A}}: \mathcal{A}^k \to \mathcal{A}^{k+1}, \ k \geq 0, \ d^2 = 0.$
 - $a \wedge b = (-1)^{kl} b \wedge a, \ a \in \mathcal{A}^k, b \in \mathcal{A}^l.$
 - $d(a \wedge b) = da \wedge b + (-1)^k a \wedge db, a \in \mathcal{A}^k$ (the Leibniz rule).

Introduction: Homomorphisms and cohomology

- Let $(\mathcal{A}, d_{\mathcal{A}})$ and $(\mathcal{B}, d_{\mathcal{B}})$ two DGA's and $f : \mathcal{A} \to \mathcal{B} \mathbb{K}$ -linear map such that:
- $f(\mathcal{A}^k) \subset \mathcal{B}^k$, $k \ge 0$ and $f(a \land b) = f(a) \land f(b)$, $d_{\mathcal{B}}(f(a)) = f(d_{\mathcal{A}}(a))$, f-ahomomorphism of differential graded algebras.
- $H^k(\mathcal{A}, d_{\mathcal{A}}) := \operatorname{Ker}(d_{\mathcal{A}} : \mathcal{A}^k \to \mathcal{A}^{k+1}) / \operatorname{Im}(d_{\mathcal{A}} : \mathcal{A}^{k-1} \to \mathcal{A}^k)$ and if f - DGA-homomorphism then $f^* : H^*(\mathcal{A}, d_{\mathcal{A}}) \to H^*(\mathcal{B}, d_{\mathcal{B}}, f^*[a] = [f(a)].$
- If $H^0(\mathcal{A}, d_{\mathcal{A}}) = \mathbb{K}$, then $\mathcal{A}-$ connected; if , in addition $H^1(\mathcal{A}, d_{\mathcal{A}}) = 0$ then $\mathcal{A}-$ simply connected.
- If there exists a surjection $\epsilon : \mathcal{A} \to \mathbb{K}$ of DGA's where $deg(k) = 0, k \in \mathbb{K}$ and $d_{\mathbb{K}} \simeq 0$ then \mathcal{A} augmented.
- Main example: X-smooth manifold, A = Ω*(X)- smooth differential forms DGA with d_A = d_{DR}. X- simply connected then Ω*(X)- also simply connected.

Let $\mathbb{K} = \mathbb{R}$.

- A DGA $(\mathcal{M}, d_{\mathcal{M}})$ is minimal if:
- $\mathcal{M}^0 = \mathbb{R}$ and $d(\mathcal{M}^0) = 0$.
- $\mathcal{M}^+ = \bigoplus_{k>0} \mathcal{M}^k$ is freely generated by homogeneous elements $x_1, \ldots, x_n \ldots$ i.e. $\mathcal{M}^+ = \Lambda < x_1, x_2, \ldots >$ for each k > 0 there exist finitely many such generators degree k, and $\deg x_i \leq \deg x_j$, if $i \leq j$.
- differential d is reducible: $dx_i \in \Lambda(x_1, \ldots, x_{i-1}), i \ge 1$.
- \mathcal{M} -simply connected iff $\mathcal{M}^1 = 0$. In this case $\deg x_i \ge 2$ and the reducibility means $d\mathcal{M}^+ \subset \mathcal{M}^+ \land \mathcal{M}^+$.

Introduction: Minimal model of DGA

An algebra $(\mathcal{M}, d_{\mathcal{M}})$ is called a *minimal model* for an algebra $(\mathcal{A}, d_{\mathcal{A}})$ if

- the algebra $(\mathcal{M}, d_{\mathcal{M}})$ is minimal;
- there exists a homomorphism h : (M, d_M) → (A, d_A) inducing an isomorphism of cohomology rings:

$$h^*: H^*(\mathcal{M}, d_{\mathcal{M}}) \to H^*(\mathcal{A}, d_{\mathcal{A}}).$$

(h*-quasi-isomorphism)

Introduction: Existence and example

D. Sullivan (1974):

Theorem

If $(\mathcal{A}, d_{\mathcal{A}})$ is a simply connected DGA such that $\dim H^{k}(\mathcal{A}) < \infty$ for each $k \geq 0$, then there exists a unique (up to isomorphisms) minimal model for \mathcal{A} .

Example

X- a simply connected compact manifold; $\mathcal{A} = \Omega^*(X)$; The minimal model \mathcal{M}_X for \mathcal{A} (also called the (real) minimal model for X) is isomorphic to $H^*(X, \mathbb{R})$ because

$$H^*(X,\mathbb{R})\simeq H^*(\Omega(X))\Rightarrow$$

 $h: (\mathcal{M}_X, d_{\mathcal{M}}) \to (\Omega^*(X), d_X) \Rightarrow h^*: H^*(\mathcal{M}_X) \simeq H^*(X, \mathbb{R}).$

Introduction: Heisenberg group

Let G be a group of $3 \times 3-$ real upper-triangular matrices

$$\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}, x, y, z \in \mathbb{R}$$

Consider Heisenberg nilmanifold $X = G/\Gamma = G/G_{\mathbb{Z}}$; with $G_{\mathbb{Z}}$ - the subgroup with $x, y, z \in \mathbb{Z}$.;

$$\omega_1 = dx, \omega_2 = dy, \omega_3 = xdy - dz.$$

The minimal model \mathcal{M}_X is generated by the elements x_1, x_2, x_3 of degree 1 such that

$$dx_1 = dx_2 = 0$$
; $dx_3 = x_1 \wedge x_2$.

We associate with each minimal algebra (\mathcal{M}, d) its cohomology ring $H^*(\mathcal{M})$, considering as a DGA with differential zero: $(H^*(\mathcal{M}), 0)$. The minimal algebra \mathcal{M} is said to be *formal* if

 $\exists f : (\mathcal{M}, d) \to H^*(\mathcal{M}, 0) \text{ inducing an isomorphism} \\ f^* : H^*(\mathcal{M}) \simeq H^*(\mathcal{M}) \text{ (in other words } (\mathcal{M}, d) - \text{ minimal model for its cohomology ring).}$

A DGA $(\mathcal{A}, d_{\mathcal{A}})$ - is formal if its minimal model $\mathcal{M}(\mathcal{A})$ is formal. It means that $H^*(\mathcal{A}, d_{\mathcal{A}}) = H^*(\mathcal{M}(\mathcal{A}), d_{\mathcal{M}})$.

If $\Omega(X)$ for smooth X is formal, then we say that X is formal.

Introduction: Example formality

Example

Let X be a Kähler simply connected compact. Then (from dd^c -lemma) X is formal:

$$d^c = I^{-1} dI; (\Omega^{*,cl}(X),d^c) \subset (\Omega^*(X),d); (\Omega^*(X),d)/(\Omega^{*,cl}(X),d^c) -$$

quotient dd^c -lemma implies two quasi-isomorphisms:

$$(\Omega^*(X), d) \leftarrow (\Omega^{*,cl}(X), d^c) \rightarrow (\Omega^*(X), d)/(\Omega^{*,cl}(X), d^c)$$

and the differential on $(\Omega^*(X), d)/(\Omega^{*,cl}(X), d^c)$ vanishes.

Introduction: Example non-formality

Example

One example of a non-formal algebra is the minimal model for the three- dimensional Heisenberg nilmanifold $X = G/G_{\mathbb{Z}}$. Indeed, if there exists a homomorphism

$$f:(\mathcal{M}_X,d)\to(H^*(X),0)$$

that induces an isomorphism of the cohomology rings, then

$$f(x_1) \neq 0, f(x_3) = 0 \Rightarrow f(x_1 \wedge x_3) = 0.$$

But the element $x_1 \wedge x_3$ realizes a non-trivial cohomology class.

A_{∞} —algebras. Formal definition

definition

Let \mathbb{K} be a field and \mathcal{A} a \mathbb{Z} -graded \mathbb{K} -vector space, $\mathcal{A} = \bigoplus_{i \in \mathbb{Z}} \mathcal{A}^i$. An A_{∞} -algebra structure on \mathcal{A} is a family of graded linear maps $m_n : \mathcal{A}^{\otimes n} \to \mathcal{A}, n \geq 1$, such that the degree of m_n is 2 - n and the identities ("Stasheff Identities"(SI(n)):

$$\sum_{\substack{r+s+p=n\\r,p\geq 0;s\geq 1}} (-1)^{rs+p} m_{r+1+p} \circ (id^{\otimes r} \otimes m_s \otimes id^{\otimes p}) = 0$$

hold for all $n \ge 1$.

Koszul's sign rule: if we evaluate on specific elements of a tensor product space.

$$(f \otimes g)(x \otimes y) = (-1)^{\deg(g)\deg(x)}f(x) \otimes g(y),$$

where f and g are homogeneous maps and x, y are homogeneous elements in the domains of f and g respectively. 12/27

Some consequences of the definition

- If n = 1, r, p = 0 and $s = 1, m_1$ is a degree 1 map, and SI(1) is simply $m_1 \circ m_1 = 0$, that is, (\mathcal{A}, m_1) is a cochain differential complex.
- If n = 2, identity SI(2) implies that m₂ : A^{⊗2} → A is a bilinear map that behaves like a multiplication and that the differential m₁ satisfies the graded Leibnitz rule with respect to m₂.
- This multiplication is not necessarily associative, as it follows from SI(3), namely

$$m_2\circ(m_2\otimes id)-m_2\circ(id\otimes m_2)=~(1)$$

 $m_1 \circ m_3 + m_3 \circ (id^{\otimes 2} \otimes m_1 + id \otimes m_1 \otimes id + m_1 \otimes id^{\otimes 2}).$ (2)

- We note that if $m_3 = 0$, then (A, m_1, m_2) is a DGA with a differential of degree 1.
- Every DGA is an A_{∞} -algebra with $m_3 = m_4 = \ldots = 0$.

$A_{\infty-}$ morphisms

- An A_{∞} -algebra is minimal if $m_1 = 0$;
- Let \mathcal{A} and \mathcal{B} be two A_{∞} algebras; An A_{∞} -morphism $f: \mathcal{A} \to \mathcal{B}$ a family $f_n: \mathcal{A}^{\otimes n} \to \mathcal{B}$ of degree 1 n linear maps, $n \geq 1$ such that

$$\sum_{\substack{r+s+p=n\\r,p\geq 0;s\geq 1}} (-1)^{rs+p} f_{r+1+p}(id^{\otimes r} \otimes m_s \otimes id^{\otimes p}) =$$
(3)
$$\sum_{\substack{0\leq r\leq n\\ \overline{n=i_1+\ldots+i_r}}} (-1)^s m_r(f_{i_1}\otimes \ldots \otimes f_{i_r}),$$
(4)

being $s = \sum_{s=1}^{k=1} k(i_{r-k} - 1)$.

A quasi-isomorphism f₁ : (A, m_{1,A}) → (B, m_{1,B}) of cochain complexes is called A_∞-algebra quasi-isomorphism.

Informal origins of A_∞

• Let us first consider the following *homotopy data* of chain complexes:

$$h \stackrel{p}{\frown} (\mathcal{A}, d_{\mathcal{A}}) \xrightarrow{p}_{i} (\mathcal{H}, d_{\mathcal{H}})$$

 $\mathrm{Id}_{\mathcal{A}} - ip = d_{\mathcal{A}}h + hd_{\mathcal{A}} ,$

where *i* and *p* are morphisms of chain complexes and where *h* is a degree +1 map. It is called a *homotopy retract*, when the map *i* is a quasi-isomorphism, i.e. when it realizes an isomorphism in homology. If moreover $pi = \text{Id}_{\mathcal{H}}$, then it is called a *deformation retract*.

• Is it possible to transfer the associative algebra structure from \mathcal{A} to \mathcal{H} through the homotopy data in some way ?

Associativity

- $m: \mathcal{A}^{\otimes 2} \to \mathcal{A}$, such that $m(m(a \otimes b) \otimes c) = m(a \otimes m(b \otimes c))$.
- Define a binary operation $\mu : \mathcal{H}^{\otimes 2} \to \mathcal{H}$, such that $\mu := pmi^{\otimes 2}$

- If $I \in \operatorname{Iso}(\mathcal{H}, \mathcal{A})$ and $i^{-1} = p$ then answer: yes.
- But in general *ip* = *H* mod *h*− homotopy. The associativity relation is equivalent to the vanishing of the associator in Hom(*H*^{⊗3}, *H*)

Associativity up to homotopy

• This mapping space becomes a chain complex when equipped with the usual differential map $\partial(f) := d_{\mathcal{H}}f - (-1)^{|}f|d_{\mathcal{H}^{\otimes 3}}f$. We introduce the element μ_3 :

$$\Psi := \bigvee_{p}^{i} \bigvee_{p}^{i} - \bigvee_{p}^{i} \bigvee_{p}^{i}$$

• $deg(\mu_3) = 1I$, since the maps i, p, and m have degree 0 and h is a map of degree 1.

Proposition

The product μ_2 is associative up to the homotopy μ_3 in the chain complex (Hom $(\mathcal{H}^{\otimes 3}, \mathcal{H}), \partial$):

$$\partial(\forall) = \forall - \forall$$

Kadeishvili transfer theorem

- The next step: to check whether μ_2 and μ_3 satisfy some relation. The answer is again yes, they satisfy one new relation but only up to yet another homotopy, which is a linear map μ_4 of degree +2 in Hom $(\mathcal{H}^{\otimes 4}, \mathcal{H})$. And so on...
- Resume: A_{∞} algebra or an associative algebra up to homotopy, also called homotopy associative algebra, is a chain complex (\mathcal{A}, d) endowed with a family of operations $_n$: $\mathcal{A}^{\otimes n} \to \mathcal{A}$ of degree n-2 for any $n \ge 2$, satisfying the aforementioned relations.

Theorem

The operations $\{\mu_n\}, n \ge 2$ defined on \mathcal{H} from the associative product m on \mathcal{A} by the above formulae form an A_{∞} -algebra structure on \mathcal{H} .

Merkulov's transfer theorem-assumptions

 $\mathcal{A}, d, [,] - \text{DGA and}$ $[\phi, \psi] = \phi \circ \psi - (-1)^{\deg \phi \deg \psi} \psi \circ \phi - \text{super-commutator};$ Assumption:

- there exists a subcomplex W ⊂ A, and a vector space homomorphism Q : A → A of degree −1, such that the image of the map Id − [d, Q] : A → A is in W.
- Define $\lambda_n : \mathcal{A}^{\otimes n} \to \mathcal{A}$ of degree $2 n, n \ge 1$, as follows:
- λ_1 is determined only by the condition $Q\lambda_1 = -\mathrm{Id}$;

۵

 $\lambda_2(\mathbf{v}\otimes\mathbf{w})=\mathbf{v}\cdot\mathbf{w}, \ (\mathbf{5})$

$$\lambda_n = \sum s + p = n; s, p \ge 1(-1)^{s+1} \lambda_2(Q\lambda_s \otimes Q\lambda_p), n \ge 2,$$
 (6)

Theorem (S. Merkulov)

Let (\mathcal{A}, d) be a differential graded algebra and the Assumption holds. Define linear maps $m_n : W^{\otimes n} \to W$, where $n \ge 1$, via

- **1** $m_1 = d$,
- 2 $m_n = (\mathrm{Id} [d, Q]) \circ \lambda_n$, for ≥ 2 , in which λ_n are the maps constructed above. The maps m_n satisfy the identities SI(n), and therefore they determine an A_{∞} -algebra structure on the complex W.

Let $\mathcal{A} = \bigoplus_{p \in \mathbb{Z}} \mathcal{A}^p$ be a differential graded algebra with differential d of degree 1. B^p and Z^p - are the spaces of coboundaries and cocycles of \mathcal{A}^p respectively. Then, there are subspaces H^p of Z^p and L^p of \mathcal{A}^p such that

$$Z^{p} = B^{p} \oplus H^{p}$$
 and $\mathcal{A}^{p} = Z^{p} \oplus L^{p} = B^{p} \oplus H^{p} \oplus L^{p}$. (7)

We set $W = \bigoplus_{p \in \mathbb{Z}} H^p$ and we define the map Q as follows: $Q^p : \mathcal{A}^p \to \mathcal{A}^{p-1}$ is given by

$$Q^{p}|_{L^{p}} = Q^{p}|_{H^{p}} = 0$$
, $Q^{p}|_{B^{p}} = (d^{p-1}|_{L^{p-1}})^{-1}$

We note that the map $d^{p-1}|_{L^{p-1}}$ is indeed one-to-one, since $d^{p-1}(a) = 0$ only if $a \in Z^{p-1}$, but $Z^{p-1} \cap L^{p-1} = \{0\}$.

Diagram shows how *d* acts:

Diagram shows the action of Q:

The map Q determines an homotopy between Id and pr, where $pr : \mathcal{A} \to \mathcal{A}$ is the projection from \mathcal{A} onto W: we have Id -pr = d Q + Q d and therefore Merkulov's **Assumption** holds with W and Q as above. Note that $d|_{H^p} = 0$, so, the operation m_1 of the Merkulov's Theorem is identically zero and therefore the operation m_2 is an *associative* multiplication on W. We identify the complex W with the cohomology of \mathcal{A} , and so hereafter we write $H\mathcal{A}$ instead of W.

Theorem (4)

Consider the functions λ_n defined in (5,6). We set $m_n = pr \circ \lambda_n : H\mathcal{A}^{\otimes n} \to H\mathcal{A}$ for $n \ge 2$. Then, $(H\mathcal{A}, 0, m_2, m_3, ...)$ is an A_{∞} -algebra and $f = \{-Q \lambda_n\}_{n \ge 1}$ is a quasi-isomorphism of A_{∞} -algebras between $H\mathcal{A}$ and \mathcal{A} .

An A_{∞} -algebra constructed as above is called a *Merkulov model* or a *minimal model* of the DGA \mathcal{A} , in analogy with D. Sullivan's minimal models for DGA introduced in the context of rational homotopy theory. In the context of A_{∞} -algebras, being quasi-isomorphic is a *transitive* property, and therefore all Merkulov models of \mathcal{A} (which obviously depend on the choice of the subspaces H^p and L^p introduced above) are quasi-isomorphic as A_{∞} -algebras.

Merkulov's minimal model: applications

- *M* compact Kähler, $\alpha, \beta \delta$ -closed. But $\delta(\alpha \wedge \beta) \neq 0$
- How to cure it? to define $\alpha \circ \beta := (\alpha \wedge \beta)|_{\text{Ker}} \delta$. But \circ is no more associative.
- Merkulov: o- homotopy associative!
- There are various A_{∞} structures on M :
 - real Hodge-de Rham $W := \operatorname{Ker} d_c^*, \ Q := d_c \cdot G_d \cdot \Lambda;$
 - **2** complex Hodge-Dolbeault - $W := \text{Ker}\partial^*$, $Q := i\partial \cdot G_{\partial} \cdot \Lambda$;
 - If M−Calabi-Yau there is the third A_∞−structure related to Barannikov-Kontsevich DGA

NEVER DISCUSS INFINITY WITH A MATHEMATICIAN. YOU'LL NEVER HEAR THE END OF IT

Happy and peaceful New Year! Merry Xmass! Happy Hanukkah! Спасибо за внимание!