Towards a theory of homotopy structures for differential equations: First definitions and examples -1

Volodya Rubtsov

LAREMA 6093 du CNRS, Université d'Angers GDT in Paris and IITP RAS Moscow volodya@univ-angers.fr

Joseph Krasil'schshik Seminar "Geometry of Differential Equations, IMU, Moscow, December, 18, 2024 г.

Sources

This talk is based on:

Journal of Differential Equations Volume 413, 25 December 2024, Pages 805-827

Towards a theory of homotopy structures for differential equations: First definitions and examples

Iean-Pierre Magnot ^{a b} 쯔, Enrique G. Reves ^c A 쯔, Vladimir Rubtsov ^{a d e} 쯔

Some picture files are due to: Bruno Vallette "Algebra + Homotopy = Operad" $(\text{arXiv}: 1202.3245 \text{ v } 1 \text{ [math. AT]})$ 2/27

- $\mathcal{A}-$ differential graded algebra (DGA) over the field \mathbb{K} :
	- $\mathcal{A}=\oplus_{k\geq 0}\mathcal{A}^k, \, \deg\!boldsymbol{a} = \boldsymbol{k}, \, \boldsymbol{a} \in \mathcal{A}^k.$
	- associative multiplication $\wedge: \mathcal{A}^k \times \mathcal{A}^l \rightarrow \mathcal{A}^{k+l}, k,l \geq 0.$
	- differential $d_A : \mathcal{A}^k \to \mathcal{A}^{k+1}, k \geq 0, d^2 = 0.$
	- $a\wedge b=(-1)^{kl}b\wedge a,\ a\in \mathcal{A}^{k}, b\in \mathcal{A}^{l}.$
	- $d(a \wedge b) = da \wedge b + (-1)^k a \wedge db, a \in \mathcal{A}^k$ (the Leibniz rule).

Introduction: Homomorphisms and cohomology

- Let (\mathcal{A}, d_A) and (\mathcal{B}, d_B) two DGA's and $f : \mathcal{A} \to \mathcal{B} \mathbb{K}$ -linear map such that:
- $f(\mathcal{A}^k) \subset \mathcal{B}^k, \ k \geq 0$ and $f(a \wedge b) = f(a) \wedge f(b), d_{\mathcal{B}}(f(a)) = f(d_{\mathcal{A}}(a)), f - a$ homomorphism of differential graded algebras.
- $H^k(\mathcal{A},d_\mathcal{A}) := {\rm Ker}(d_\mathcal{A}:\mathcal{A}^k \to \mathcal{A}^{k+1}) / {\rm Im}(d_\mathcal{A}:\mathcal{A}^{k-1} \to \mathcal{A}^k)$ and if f - DGA-homomorphism then $f^*: H^*(A, d_A) \to H^*(B, d_B, f^*[a] = [f(a)].$
- If $H^0(\mathcal{A},d_{\mathcal{A}})=\mathbb{K}$, then $\mathcal{A}-$ connected; if , in addition $H^1(\mathcal{A}, d_{\mathcal{A}}) = 0$ then $\mathcal{A}-$ simply connnected.
- If there exists a surjection $\epsilon : \mathcal{A} \to \mathbb{K}$ of DGA's where $deg(k) = 0, k \in \mathbb{K}$ and $d_{\mathbb{K}} \simeq 0$ then $\mathcal{A}-$ augmented.
- Main example: X–smooth manifold, $\mathcal{A} = \Omega^*(X)$ smooth differential forms - DGA with $d_A = d_{DR}$. X – simply connected then $\Omega^*(X)$ - also simply connected.

Introduction: Minimal DGA

Let $\mathbb{K} = \mathbb{R}$.

- A DGA (M, d_M) is *minimal* if:
- $\mathcal{M}^0 = \mathbb{R}$ and $d(\mathcal{M}^0) = 0.$
- $\mathcal{M}^+ = \oplus_{k>0} \mathcal{M}^k$ is freely generated by homogeneous elements $x_1, \ldots, x_n \ldots$ i.e. $\mathcal{M}^+ = \Lambda < x_1, x_2, \ldots >$ for each $k > 0$ there exist finitely many such generators degree k , and $\mathrm{deg} \mathsf{x}_i \leq \mathrm{deg} \mathsf{x}_j,$ if $i \leq j$.
- **•** differential *d* is *reducible*: $dx_i \in \Lambda(x_1, \ldots, x_{i-1}), i \geq 1$.
- M–simply connected iff $\mathcal{M}^1 = 0$. In this case $\text{deg} x_i > 2$ and the reducibility means $d\mathcal{M}^+ \subset \mathcal{M}^+ \wedge \mathcal{M}^+$.

Introduction: Minimal model of DGA

An algebra (M, d_M) is called a *minimal model* for an algebra (A, d_A) if

- the algebra (M, d_M) is minimal;
- there exists a homomorphism $h : (\mathcal{M}, d_{\mathcal{M}}) \to (\mathcal{A}, d_{\mathcal{A}})$ inducing an isomorphism of cohomology rings:

$$
h^*: H^*(\mathcal{M}, d_{\mathcal{M}}) \to H^*(\mathcal{A}, d_{\mathcal{A}}).
$$

(h [∗]−quasi-isomorphism)

Introduction: Existence and example

D. Sullivan (1974):

Theorem

If $(\mathcal{A},d_{\mathcal{A}})$ is a simply connected DGA such that ${\rm dim}H^{k}(\mathcal{A})<\infty$ for each $k > 0$, then there exists a unique (up to isomorphisms) minimal model for A.

Example

X– a simply connected compact manifold; $\mathcal{A} = \Omega^*(X)$; The minimal model \mathcal{M}_X for $\mathcal A$ (also called the (real) minimal model for X) is isomorphic to $H^*(\dot{X},\mathbb{R})$ because

$$
H^*(X,\mathbb{R})\simeq H^*(\Omega(X))\Rightarrow
$$

 $h: (\mathcal{M}_X, d_{\mathcal{M}}) \to (\Omega^*(X), d_X) \Rightarrow h^*: H^*(\mathcal{M}_X) \simeq H^*(X, \mathbb{R}).$

Introduction: Heisenberg group

Let G be a group of $3 \times 3-$ real upper-triangular matrices

$$
\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}, x, y, z \in \mathbb{R}
$$

Consider Heisenberg nilmanifold $X = G/\Gamma = G/G_{\mathbb{Z}}$; with $G_{\mathbb{Z}}$ the subgroup with $x, y, z \in \mathbb{Z}$.;

$$
\omega_1 = dx, \omega_2 = dy, \omega_3 = xdy - dz.
$$

The minimal model \mathcal{M}_X is generated by the elements x_1, x_2, x_3 of degree 1 such that

$$
dx_1 = dx_2 = 0
$$
; $dx_3 = x_1 \wedge x_2$.

We associate with each minimal algebra (M, d) its cohomology ring $H^*(\mathcal{M})$, considering as a DGA with differential zero: $(H^*(\mathcal{M}),0)$. The minimal algebra M is said to be *formal* if $\exists f: (\mathcal{M},d) \rightarrow H^*(\mathcal{M},0)$ inducing an isomorphism $f^*: H^*({\mathcal M}) \simeq H^*({\mathcal M})$ (in other words $({\mathcal M},d)-$ minimal model for its cohomology ring).

A DGA (A, d_A) – is formal if its minimal model $\mathcal{M}(\mathcal{A})$ is formal. It means that $H^*(\mathcal{A},d_\mathcal{A})=H^*(\mathcal{M}(\mathcal{A}),d_\mathcal{M}).$

If $\Omega(X)$ for smooth X is formal, then we say that X is formal.

Introduction: Example formality

Example

Let X be a Kähler simply connected compact. Then (from dd^c -lemma) X is formal:

$$
d^c = I^{-1}dl; (\Omega^{*,cl}(X), d^c) \subset (\Omega^*(X), d); (\Omega^*(X), d)/(\Omega^{*,cl}(X), d^c) -
$$

quotient dd^c -lemma implies two quasi-isomorphisms:

$$
(\Omega^*(X),d) \leftarrow (\Omega^{*,cl}(X),d^c) \rightarrow (\Omega^*(X),d)/(\Omega^{*,cl}(X),d^c)
$$

and the differential on $(\Omega^*(X),d)/(\Omega^{*,cl}(X),d^c)$ vanishes.

Introduction: Example non-formality

Example

One example of a non-formal algebra is the minimal model for the three- dimensional Heisenberg nilmanifold $X = G/G_{\mathbb{Z}}$. Indeed, if there exists a homomorphism

$$
f:(\mathcal{M}_X,d)\to (H^*(X),0)
$$

that induces an isomorphism of the cohomology rings, then

$$
f(x_1) \neq 0, f(x_3) = 0 \Rightarrow f(x_1 \wedge x_3) = 0.
$$

But the element $x_1 \wedge x_3$ realizes a non-trivial cohomology class.

A∞−algebras. Formal definition

definition

Let $\mathbb K$ be a field and $\mathcal A$ a $\mathbb Z-$ graded $\mathbb K-$ vector space, $\mathcal A=\oplus_{i\in\mathbb Z}\mathcal A^i.$ An A_{∞} –algebra structure on A is a family of graded linear maps $m_n : \mathcal{A}^{\otimes n} \to \mathcal{A}, n \geq 1$, such that the degree of m_n is 2 – n and the identities ("Stasheff Identities" $(SI(n))$:

$$
\sum_{\frac{r+s+p=n}{r,p\geq 0;s\geq 1}} (-1)^{rs+p}m_{r+1+p}\circ (id^{\otimes r}\otimes m_s\otimes id^{\otimes p})=0
$$

hold for all $n > 1$.

Koszul's sign rule: if we evaluate on specific elements of a tensor product space.

$$
(f\otimes g)(x\otimes y)=(-1)^{\deg(g)\deg(x)}f(x)\otimes g(y),
$$

where f and g are homogeneous maps and x, y are homogeneous elements in the domains of f and g respectively.

Some consequences of the definition

- If $n = 1, r, p = 0$ and $s = 1, m₁$ is a degree 1 map, and SI(1) is simply $m_1 \circ m_1 = 0$, that is, (\mathcal{A}, m_1) is a cochain differential complex.
- If $n = 2$, identity SI(2) implies that $m_2 : \mathcal{A}^{\otimes 2} \to \mathcal{A}$ is a bilinear map that behaves like a multiplication and that the differential m_1 satisfies the graded Leibnitz rule with respect to m_2 .
- This multiplication is not necessarily associative, as it follows from SI(3), namely

$$
m_2 \circ (m_2 \otimes id) - m_2 \circ (id \otimes m_2) = (1)
$$

 $m_1 \circ m_3 + m_3 \circ (id^{\otimes 2} \otimes m_1 + id \otimes m_1 \otimes id + m_1 \otimes id^{\otimes 2}).$ (2)

- We note that if $m_3 = 0$, then (\mathcal{A}, m_1, m_2) is a DGA with a differential of degree 1.
- Every DGA is an A_{∞} -algebra with $m_3 = m_4 = \ldots = 0$.

$A_{\infty-}$ morphisms

- An A_{∞} algebra is minimal if $m_1 = 0$;
- Let A and B be two A_{∞} algebras; An A_{∞} morphism $f: A \to B-$ a family $f_n: A^{\otimes n} \to B$ of degree $1-n$ linear maps, $n > 1$ such that

$$
\sum_{\frac{r+s+p=n}{r,p\geq 0;s\geq 1}} (-1)^{rs+p} f_{r+1+p}(id^{\otimes r} \otimes m_s \otimes id^{\otimes p}) =
$$
(3)

$$
\sum_{\frac{0\leq r\leq n}{n=i_1+\ldots+i_r}} (-1)^s m_r(f_{i_1} \otimes \ldots \otimes f_{i_r}),
$$

being $s = \sum_{s=1}^{k=1} k(i_{r-k} - 1)$.

A quasi-isomorphism f_1 : $(A, m_{1,A}) \rightarrow (B, m_{1,B})$ of cochain complexes is called A_{∞} – algebra quasi-isomorphism.

Informal origins of A_{∞}

• Let us first consider the following *homotopy data* of chain complexes:

$$
h\bigcap_{i=1}^{n} (A, d_{A}) \xrightarrow[i]{} \bigoplus_{i=1}^{n} (\mathcal{H}, d_{\mathcal{H}})
$$

$$
\mathrm{Id}_{\mathcal{A}} - ip = d_{A}h + hd_{A} ,
$$

where i and p are morphisms of chain complexes and where h is a degree $+1$ map. It is called a *homotopy retract*, when the map i is a quasi-isomorphism, i.e. when it realizes an isomorphism in homology. If moreover $pi = \text{Id}_H$, then it is called a *deformation* retract.

• Is it possible to transfer the associative algebra structure from A to H through the homotopy data in some way?

Associativity

- $m : \mathcal{A}^{\otimes 2} \to \mathcal{A}$, such that $m(m(a \otimes b) \otimes c) = m(a \otimes m(b \otimes c))$.
- Define a binary operation $\mu : \mathcal{H}^{\otimes 2} \to \mathcal{H}$, such that $\mu := \rho m i^{\otimes 2}$

 $Y = \bigvee^{i-i}$

 \bullet But in general $ip = H \mod h$ homotopy. The associativity relation is equivalent to the vanishing of the associator in $\mathrm{Hom}(\mathcal{H}^{\otimes 3},\mathcal{H})$

Associativity up to homotopy

• This mapping space becomes a chain complex when equipped with the usual differential map $\partial(f):=d_{\mathcal H}f-(-1)^{|f|}d_{\mathcal H^{\otimes 3}}f.$ We introduce the element μ_3 :

$$
\Psi = \bigvee_{p=1}^{i-1} \bigvee_{p=p}^{i-1}
$$

 $\log(\mu_3) = 1$, since the maps *i*, *p*, and *m* have degree 0 and *h* is a map of degree 1.

Proposition

The product μ_2 is associative up to the homotopy μ_3 in the chain complex $(\text{Hom}(\mathcal{H}^{\otimes 3},\mathcal{H}),\partial)$:

$$
\delta(\gamma) = \gamma - \gamma
$$

Kadeishvili transfer theorem

- The next step: to check whether μ_2 and μ_3 satisfy some relation. The answer is again yes, they satisfy one new relation but only up to yet another homotopy, which is a linear map μ_4 of degree +2 in $\text{Hom}(\mathcal{H}^{\otimes 4},\mathcal{H})$. And so on...
- Resume: A_{∞} algebra or an associative algebra up to homotopy, also called *homotopy associative algebra*, is a chain complex (\mathcal{A}, d) endowed with a family of operations _n: $\mathcal{A}^{\otimes n} \to \mathcal{A}$ of degree $n - 2$ for any $n \geq 2$, satisfying the aforementioned relations.

Theorem

The operations $\{\mu_n\}$, $n > 2$ defined on H from the associative product m on A by the above formulae form an A_{∞} − algebra structure on H.

Merkulov's transfer theorem-assumptions

 $\mathcal{A}, d,$ $\lceil,$ \rceil $-$ DGA and $[\phi, \psi] = \phi \circ \psi - (-1)^{\deg \phi \deg \psi} \psi \circ \phi$ – super-commutator; Assumption:

- there exists a subcomplex $W \subset A$, and a vector space homomorphism $Q : A \rightarrow A$ of degree -1 , such that the image of the map Id – [d, Q] : $A \rightarrow A$ is in W.
- Define $\lambda_n : \mathcal{A}^{\otimes n} \to \mathcal{A}$ of degree $2 n, n \geq 1$, as follows:
- λ_1 is determined only by the condition $Q\lambda_1 = -Id$;

 \bullet

$$
\lambda_2(\mathsf{v}\otimes\mathsf{w})=\mathsf{v}\cdot\mathsf{w},\ (5)
$$

$$
\lambda_n=\sum s+p=n; s,p\geq 1(-1)^{s+1}\lambda_2(Q\lambda_s\otimes Q\lambda_p), n\geq 2, \quad (6)
$$

Theorem (S. Merkulov)

Let (A, d) be a differential graded algebra and the Assumption holds. Define linear maps $m_n : W^{\otimes n} \to W$, where $n > 1$, via

- \bullet m₁ = d,
- **2** $m_n = (\text{Id} [d, Q]) \circ \lambda_n$, for ≥ 2 , in which λ_n are the maps constructed above. The maps m_n satisfy the identities $SI(n)$, and therefore they determine an A_{∞} −algebra structure on the complex W.

Let $\mathcal{A}=\bigoplus_{\rho\in\mathbb{Z}}\mathcal{A}^\rho$ be a differential graded algebra with differential d of degree 1 B^{ρ} and Z^{ρ} - are the spaces of coboundaries and cocycles of ${\mathcal A}^p$ respectively. Then, there are subspaces H^p of Z^p and L^p of ${\mathcal A}^p$ such that

$$
Z^p = B^p \oplus H^p \quad \text{and} \quad A^p = Z^p \oplus L^p = B^p \oplus H^p \oplus L^p \ . \tag{7}
$$

We set $W=\bigoplus_{p\in\mathbb{Z}}H^p$ and we define the map Q as follows: Q^p : $A^p \rightarrow A^{p-1}$ is given by

$$
Q^p|_{L^p}=Q^p|_{H^p}=0\ ,\quad Q^p|_{B^p}=\left(d^{p-1}|_{L^{p-1}}\right)^{-1}
$$

We note that the map $d^{p-1}|_{L^{p-1}}$ is indeed one-to-one, since $d^{p-1}(a) = 0$ only if $a \in \mathbb{Z}^{p-1}$, but $\mathbb{Z}^{p-1} \cap L^{p-1} = \{0\}.$

.

Diagram shows how d acts:

Diagram shows the action of Q :

The map Q determines an homotopy between Id and pr, where $pr: A \rightarrow A$ is the projection from A onto W: we have $Id - pr = d Q + Q d$ and therefore Merkulov's **Assumption** holds with W and Q as above. Note that $d|_{H^p} = 0$, so, the operation m_1 of the Merkulov's Theorem is identically zero and therefore the operation $m₂$ is an associative multiplication on W. We identify the complex W with the cohomology of A , and so hereafter we write $H.A$ instead of W .

Theorem (4)

Consider the functions λ_n defined in [\(5](#page-18-0)[,6\)](#page-18-1). We set $m_n = pr \circ \lambda_n : H \mathcal{A}^{\otimes n} \to H \mathcal{A}$ for $n > 2$. Then, $(HA, 0, m_2, m_3, ...)$ is an A_∞-algebra and $f = \{-Q\lambda_n\}_{n\geq 1}$ is a quasi-isomorphism of A_{∞} -algebras between HA and A.

An A_{∞} -algebra constructed as above is called a *Merkulov model* or a minimal model of the DGA $\mathcal A$, in analogy with D. Sullivan's minimal models for DGA introduced in the context of rational homotopy theory. In the context of A_{∞} -algebras, being quasi-isomorphic is a transitive property, and therefore all Merkulov models of A (which obviously depend on the choice of the subspaces H^p and L^p introduced above) are quasi-isomorphic as A_{∞} -algebras.

Merkulov's minimal model: applications

- $M-$ compact Kähler, $\alpha, \beta\delta$ –closed. But $\delta(\alpha \wedge \beta) \neq 0$
- How to cure it? to define $\alpha \circ \beta := (\alpha \wedge \beta)|_{\text{Ker}} \delta$. But $\circ -$ is no more associative.
- Merkulov: homotopy associative!

There are various A_{∞} – structures on M :

- \bullet real Hodge-de Rham $W:=\mathrm{Ker} d^*_c,\ Q:=d_c\cdot G_d\cdot \Lambda;$
- \bullet complex Hodge-Dolbeault - $W:=\mathrm{Ker}\partial^*,\ Q:=i\partial\cdot\mathsf{G}_\partial\cdot\mathsf{\Lambda};$
- **3** If M–Calabi-Yau there is the third A_{∞} –structure related to Barannikov-Kontsevich DGA

NEVER DISCUSS INFINITY WITH A MATHEMATICIAN YOU'LL NEVER HEAR THE END OF IT

Happy and peaceful New Year! Merry Xmass! Happy Hanukkah! Спасибо за внимание!