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Posing the problem: coverings over equations

E:F(zv,v,)=0

v=(V,...,v™), z2=(z,...,2),

Aot 8WW‘> ( )
o = - SRR - T 5 = |,...,| .
b <aﬁ;”a$ o o) T hoo
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Posing the problem: coverings over equations

F(Z) 7V0')—0,
£:4 F=W(zwVY,), i=1Ln,
w=(w,.. . wd)
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Posing the problem: coverings over equations

F(zv,v,) =0,
E:{ M_Wzwvy,), i=In (v(2),W(2))
w=(wl ... wd)
lv
£:F(zV,vy) =0 v(2)

v=(V,...,v™"), z2=(z,...,2),

( lolyt dlolym ) ( )
VO': . — ..., - - s O'Zl,...7| .
ozr .oy oZh .. oz b

The systenf covers the systeri, v is a covering oveE.
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Posing the problem: coverings from equations

S :G(X,u,U,) =0, X=(X1,..., %), u=(ul,...,um)
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Posing the problem: coverings from equations
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Posing the problem: coverings from equations

g F(zv,v,) =0,
W =Wi(zwV,V,), i=1Ln,

lv
E:F(zv,v,) =0,

¢ is aC-transformation, the systefcovers the systerd, v o ¢ is a
covering fromS, the fieldsd/ow' constitute a pseudosymmetry 8f
the systent is a decomposable form of the covering.
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Example 1: the Laplace equation
S: Upo) +Uo2 =0, Uhg +Ufyy #0,
the C—transformationp:
21=Uxg, Z=Ugp, V=U W =x, W =x,

the inverse transformatiopr :  x; =w!, xo = w2, u=v,
the decomposable form:

= Z1V(1,0) — 22V(0,1)
E: V(z’o) + V(072) = 07 Wg-l,O) = Z% n Z% = _\N%O,l)’
4V(0,1) T 22V(1,0)
Wio 1) = = W),

2
3+3
the pseudosymmetryd/0xy, 9/0x2).
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Pseudosymmetries of differential equations
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The spaces of infinite jets

Consider an infinite-dimensional spat® with coordinates

Xi? l"lj’ LIJ0'7 i:17n7j:1’m’ |O-‘20‘

Thetotal derivativewith respect to on J*:

m

P 9
Di = 37q.+2 > U’aﬂiajg-

j=1 |o|>0

Chetverikov Coverings and multivector pseudosymmetries



The spaces of infinite jets

Consider an infinite-dimensional spat® with coordinates

Xi? l"lj’ LIJ0'7 i:17n7j:1’m’ |O-‘20‘

Thetotal derivativewith respect to on J*:

m

P 9
Di = 37q.+2 > U’aﬂiajg-

j=1 |o|>0

Theinfinite prolongatiorof systemsS : G, (X, u,u,) = 0, = 1,1, is
given by

S*: D,G, =0, lo| >0, a=1r,
whereD, = D o... oDy for o = (iy, ..., in), S C J®.
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The Cartan distribution

The Cartan distributioron S°°:

CD(S) = spar(so){D1|gecs- - -+ Dngoo }-
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The Cartan distribution
The Cartan distributioron S°°:
CD(S) = Spara:oo(‘Soo){D1|Soo7 ey Dn‘soo}‘
The Cartan form®on S°:
n
deg=dg— > Di(g)dx, ge C™(S™).
i=1
CAN(S) = sparw s=){deg : g€ C™(8™)}.
CRAK(S) = CAYS) A --- ACAL(S).

k times
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The Cartan distribution
The Cartan distributioron S°°:
CD(S) = Spara:oo(‘Soo){D1|Soo7 ey Dn‘soo}‘
The Cartan form®on S°:
n
deg=dg— > Di(g)dx, ge C™(S™).
i=1
CAN(S) = sparw s=){deg : g€ C™(8™)}.
CRAK(S) = CAYS) A --- ACAL(S).

k times

weCAXS) += Dilg.]w=0, i=1n
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Mappings of diffieties

A mappingep : S — £ is C—transformatiorif
@ ¢ issmooth, i.e.¢* (C>(£>))CC>(8>), ¢*(g) = go ¢;
e there exists a smooth inverse mapping;
e ¢.(CD(S)) =CD(¢).
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Mappings of diffieties

A mappingep : S — £ is C—transformatiorif
@ ¢ issmooth, i.e.¢* (C>(£>))CC>(8>), ¢*(g) = go ¢;
e there exists a smooth inverse mapping;
e ¢.(CD(S)) =CD(¢).

A smooth mapping : S — £ is acoveringif

e the tangent mapping, ¢ is a vector space epimorphism for any
0 €S>

e 1,(CD(S)) =CD(&);
e the dimker, g is the same for ang € S* (rankv).
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Pseudosymmetries of differential equations

Conditions for fibers of coverings

, 1)
1,q, (2
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Pseudosymmetries of differential equations

Conditions for fibers of coverings

Fs(zV,...,Vs,...) =0, B=1ry, D
ow - : :
— =W(ZwV,...,v,,...), i=1nj=1q, 2
92 (zw,v, ..., ) j=1q )
The total derivative with respect t for system (1)—(2) has the form
Di=Di+ Y W(xwu,... ,Uy,...)~—,
o owl

whereD; is the total derivative w.r.tx; for (1).
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Pseudosymmetries of differential equations

Conditions for fibers of coverings

Fs(zV,...,Vs,...) =0, B=1ry, D

ow - : :

— =W(ZwV,...,v,,...), i=1nj=1q, 2

92 (zw,v, ..., ) j=1q )
The total derivative with respect t for system (1)—(2) has the form

Di=Di+ Y W(xwu,... ,Uy,...)~—,
o owl
whereD; is the total derivative w.r.tx; for (1).
[Xa DI] = AX, = 1n, (3)

whereX = (9/owt, ..., 0/ow0) ", A = (avvj /awS) o
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Pseudosymmetries of differential equations

Pseudosymmetries of differential equations
The invariant version of (3):

[X,Di] = AX+ BiD, i=1n, (4)

whereD = (D, ...,Dp)T.
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Pseudosymmetries of differential equations

Pseudosymmetries of differential equations
The invariant version of (3):

[X,Di] = AX+ BiD, i=1n, (4)

whereD = (Dy,...,Dp)T. A columnX of vector fields satisfying (4)
is apseudosymmetrgf the systens.
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Pseudosymmetries of differential equations

Pseudosymmetries of differential equations
The invariant version of (3):

[X,Di] = AX + BiD, i=1n, (4)
whereD = (Dy,...,Dp)T. A columnX of vector fields satisfying (4)

is apseudosymmetrgf the systens. The relations (4) and the Jacobi
identity imply:

Dj(A) — Di(A) + AA —AA =0,  Vi], (5)
Dj(Bi) — Di(Bj) + AB —AB; =0, Vij.

Equations (5) are the Maurer—Cartan equations.
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Pseudosymmetries of differential equations

Pseudosymmetries of differential equations
The invariant version of (3):

[X,Di] = AX + BiD, i=1n, (4)
whereD = (Dy,...,Dp)T. A columnX of vector fields satisfying (4)

is apseudosymmetrgf the systens. The relations (4) and the Jacobi
identity imply:

Dj(A) — Di(A) + AA —AA =0,  Vi], (5)
Dj(Bi) — Di(Bj) + AB —AB; =0, Vij.

Equations (5) are the Maurer—Cartan equations.

(5 = [Di+A,Dj+A]=0.
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Pseudosymmetries of differential equations

Pseudosymmetries of differential equations
The invariant version of (3):

[X,Di] = AX + BiD, i=1n, (4)
whereD = (Dy,...,Dp)T. A columnX of vector fields satisfying (4)

is apseudosymmetrgf the systens. The relations (4) and the Jacobi
identity imply:

Dj(A)) — Di(A) + AA —AA =0,  Vi], ®)
Dj(Bi) — Di(Bj) + ABi — AB; =0, Vi, j.
Equations (5) are the Maurer—Cartan equations.
(5) — [Di+A.Dj+A]=0.

If A; = 0foralli, thenX is a column of higher symmetries.
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Pseudosymmetries of differential equations

Pseudosymmetries of infinite jets spaces

Theorem 1A g-columnX is a pseudosymmetry gf° iff
X=9,a+ MD,

whereyp is aq x mmatrix of functions ord>°, A= (Ay,..., Ay isa
tuple ofg x g matrices satisfying (5M is aq x n matrix of arbitrary
functions onJ*°, the term9, A has the form

0

DA = Z(D + A)U(Sﬁ)aiu;

where(D + A)? = (D1 +A1)10...0(Dp+ A", 0 = (i1,...,in), is
0 0 )T

N , 0
a(q x q) matrix differential operatoraTU = (8u},’ U
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Pseudosymmetries of differential equations

Defining equations for pseudosymmetries

Theorem 2Let
S :G(x,u,u,) =0

be a formally integrable system. Then a colukis a
pseudosymmetry af iff X is the restriction 09, o + MD to S°°,
where the matrixp = (yjj) satisfies

ZaT P+A(P)| =0 &=z pa)

j?a
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Pseudosymmetries of differential equations

Defining equations for pseudosymmetries

Theorem 2. Let
S :G(x,u,u,) =0

be a formally integrable system. Then a colukis a
pseudosymmetry af iff X is the restriction 09, o + MD to S°°,
where the matrixp = (yjj) satisfies

ZaT P+A(P)| =0 &=z pa)

j?a

The matrixyp is thegenerating matriof the pseudosymmetry, and
9, is theevolution pseudosymmetry
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Description of coverings from equations

Integrable pseudosymmetries

A columnX of vector fieldsXy, . . ., Xy on S is anintegrable
pseudosymmetrgf the systens if

o X = (Xg,...,Xq)T is a pseudosymmetry of;
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Description of coverings from equations

Integrable pseudosymmetries

A columnX of vector fieldsXy, . . ., Xy on S is anintegrable
pseudosymmetrgf the systens if

o X = (Xg,...,Xq)T is a pseudosymmetry of;
e Xi,...,Xqgenerate an involutive distribution of dimensign
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Description of coverings from equations

Integrable pseudosymmetries

A columnX of vector fieldsXy, . . ., Xy on S is anintegrable
pseudosymmetrgf the systens if

o X = (Xg,...,Xq)T is a pseudosymmetry of;
e Xi,...,Xqgenerate an involutive distribution of dimensign

e thefiniteness conditionthere exists a ringC such that
(@) Fo(S) C K C F(S) for somel > 0;
(b) Xi(K) c K foranyi = 1,q.
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Description of coverings from equations

Integrable pseudosymmetries

A columnX of vector fieldsXy, . . ., Xy on S is anintegrable
pseudosymmetrgf the systens if

o X = (Xg,...,Xq)T is a pseudosymmetry of;
e Xi,...,Xqgenerate an involutive distribution of dimensign

e thefiniteness conditionthere exists a ringC such that
(@) Fo(S) C K C F(S) for somel > 0;
(b) Xi(K) c K foranyi = 1,q.

Here Fi(S) consists of smooth functions tfu, ..., Uy, |o| <.
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Description of coverings from equations

Integrable pseudosymmetries

A columnX of vector fieldsXy, . . ., Xy on S is anintegrable
pseudosymmetrgf the systens if

o X = (Xg,...,Xq)T is a pseudosymmetry of;
e Xi,...,Xqgenerate an involutive distribution of dimensign

e thefiniteness conditionthere exists a ringC such that
(@) Fo(S) C K C F(S) for somel > 0;
(b) Xi(K) c K foranyi = 1,q.
HereFi(S) consists of smooth functions tfu, ..., u,, |o] <.
Example 2.
The fieldsd/ow?, . .., d/0wd form an integrable pseudosymmetry of
system (1)—(2)K is the ring of smooth functions of
t,w,Vv,..., Vs, |o| < s, wheresis the order of system (2).
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Description of coverings from equations

Properties of integrable pseudosymmetries

e The distribution generated b4, . . ., Xy is integrable.
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Description of coverings from equations

Properties of integrable pseudosymmetries

e The distribution generated b4, . . ., Xy is integrable.

e The distribution generated ¥4, ..., Xq,D1,...,Dpis
involutive, but is not integrable.
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Description of coverings from equations

Properties of integrable pseudosymmetries

e The distribution generated b4, . . ., Xy is integrable.

e The distribution generated ¥4, ..., Xq,D1,...,Dpis
involutive, but is not integrable.

e Any finite-dimensional Lie algebra of classical symmetries of a
system forms its integrable pseudosymmetry.
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Description of coverings from equations

Properties of integrable pseudosymmetries

e The distribution generated b4, . . ., Xy is integrable.

e The distribution generated ¥4, ..., Xq,D1,...,Dpis
involutive, but is not integrable.

e Any finite-dimensional Lie algebra of classical symmetries of a
system forms its integrable pseudosymmetry.

e Any C-transformation maps integrable pseudosymmetries into
integrable pseudosymmetries.
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Description of coverings from equations

Properties of integrable pseudosymmetries

e The distribution generated b4, . . ., Xy is integrable.

e The distribution generated ¥4, ..., Xq,D1,...,Dpis
involutive, but is not integrable.

e Any finite-dimensional Lie algebra of classical symmetries of a
system forms its integrable pseudosymmetry.

e Any C-transformation maps integrable pseudosymmetries into
integrable pseudosymmetries.

An integrable pseudosymmetiy= (Xy, ..., Xq)T determines a
coveringif the fibers of the covering coincide with the maximal
integral manifolds of the distribution generatedXy . . ., Xq.
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Description of coverings from equations

Description of coverings

Let S be a formally integrable system, and}et= (Xy,...,Xq)" be
an integrable pseudosymmetry®f A pointd € S is aregular
point of X if

e the fieldsXy, ..., Xq, D1, ..., Dy are linearly independent
o the subspaceff|y € T}, : f € K} and{df|y € T}, : f € D'K}
have constant dimension in some neighborhoot efhereD' C

is the ring generated by the functiobs (f), f € K, |o| <1,
Fo(S) C K C A(S).
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Description of coverings from equations

Description of coverings
Let S be a formally integrable system, and}et= (Xy,...,Xq)" be
an integrable pseudosymmetry®f A pointd € S is aregular
point of X if
e the fieldsXy, ..., Xq, D1, ..., Dy are linearly independent
o the subspaceff|y € T}, : f € K} and{df|y € T}, : f € D'K}
have constant dimension in some neighborhoot efhereD' C
is the ring generated by the functiobs (f), f € K, |o| <1,
Fo(S) C K C A(S).
Theorem 3.
e If X is an integrable pseudosymmetry of a systgandd € S
is a regular point oK, thenX determines a covering from a
neighborhood o#.

e For any covering from a systesthere exists an integrable
pseudosymmetry af determining this covering.
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Description of coverings from equations

Algorithm for constructing coverings

LetX = (Xy,...,Xq)T be an integrable pseudosymmetry of a system
S and letd be a regular point oX.
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Description of coverings from equations

Algorithm for constructing coverings

LetX = (Xy,...,Xq)T be an integrable pseudosymmetry of a system
S and letd be a regular point oX.

Step 1.Find an integes such that the coefficients of matrices
Ai,...,AyandBy,..., B, belong toDSK.
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Description of coverings from equations

Algorithm for constructing coverings

LetX = (Xy,...,Xq)T be an integrable pseudosymmetry of a system
S and letd be a regular point oX.

Step 1.Find an integes such that the coefficients of matrices
Ai,...,AyandBy,..., B, belong toDSK.

Step 2.Find functionsyy, . . ., gp such that

1. 01,...,0p € D°K;

2. 01,...,0p are common firstintegrals of, ..., Xg;

3. dg, ..., dg, are linearly independent at each point;
4. The set{gs, ..., gy} is a maximal set satisfying 1-3.
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Description of coverings from equations

Algorithm for constructing coverings

LetX = (Xy,...,Xq)T be an integrable pseudosymmetry of a system
S and letd be a regular point oX.

Step 1.Find an integes such that the coefficients of matrices
Ai,...,AyandBy,..., B, belong toDSK.

Step 2.Find functionsyy, . . ., gp such that

1. 01,...,0p € D°K;

2. 01,...,0p are common firstintegrals of, ..., Xg;

3. dg, ..., dg, are linearly independent at each point;
4. The set{gs, ..., gy} is a maximal set satisfying 1-3.

Step 3.Find functionswy, ..., wy € F(S) such that the matrix
(Xi(w;)(0)) is nonsingular.
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Description of coverings from equations

Algorithm for constructing coverings
LetX = (Xy,...,Xq)T be an integrable pseudosymmetry of a system
S and letd be a regular point oX.
Step 1.Find an integes such that the coefficients of matrices
Ai,...,AyandBy,..., B, belong toDSK.
Step 2.Find functionsyy, . . ., gp such that

1. 01,...,0p € D°K;

2. 01,...,0p are common firstintegrals of, ..., Xg;

3. dg, ..., dg, are linearly independent at each point;
4. The set{gs, ..., gy} is a maximal set satisfying 1-3.

Step 3.Find functionswy, ..., wy € F(S) such that the matrix
(Xi(w;)(0)) is nonsingular.

Step 4.Choose new independent variablgs. . . , X, among the
functionsgy, . . ., gp such that the matrixD;(x)()) is nonsingular.
By u denote the set of the functiogs, . . ., gp that are nokq, . . ., X.
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Description of coverings from equations

Integrable pseudosymmetries

Theorem 4 Suppose a colum¥ = (Xy, ..., Xq)T is an integrable
pseudosymmetry of a systefhandN is a nonsingulaqg x g matrix of
functions onS*°. Then
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Description of coverings from equations

Integrable pseudosymmetries

Theorem 4 Suppose a colum¥ = (Xy, ..., Xq)T is an integrable
pseudosymmetry of a systefhandN is a nonsingulaqg x g matrix of
functions onS*°. Then

e the produciNXis also an integrable pseudosymmetry of the
systems;
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Description of coverings from equations

Integrable pseudosymmetries

Theorem 4 Suppose a colum¥ = (Xy, ..., Xq)T is an integrable
pseudosymmetry of a systefhandN is a nonsingulaqg x g matrix of
functions onS*°. Then

e the produciNXis also an integrable pseudosymmetry of the
systems;

e the integrable pseudosymmetri¢aandNX determine the same
covering;
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Description of coverings from equations

Integrable pseudosymmetries

Theorem 4 Suppose a colum¥ = (Xy, ..., Xq)T is an integrable

pseudosymmetry of a systefhandN is a nonsingulaqg x g matrix of
functions onS*°. Then

e the produciNXis also an integrable pseudosymmetry of the
systems;

e the integrable pseudosymmetri¢aandNX determine the same
covering;

e if matricesA; andB; correspond tX (see (4)), then the matrices
NAN~! — D;(N)N—! andNB; correspond tiNX.
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Description of coverings from equations

Integrable pseudosymmetries

Theorem 4 Suppose a colum¥ = (Xy, ..., Xq)T is an integrable
pseudosymmetry of a systefhandN is a nonsingulaqg x g matrix of
functions onS*°. Then

e the produciNXis also an integrable pseudosymmetry of the
systems;

e the integrable pseudosymmetri¢aandNX determine the same
covering;

e if matricesA; andB; correspond tX (see (4)), then the matrices
NAN~! — D;(N)N—! andNB; correspond tiNX.

Methods for solving equations for pseudosymmetries are similar to
methods for solving equations for higher symmetries. To find
integrable pseudosymmetries, these methods should be combined
with using Theorem 4 and the finiteness condition.
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Multivector pseudosymmetries

Commutation of pseudosymmetries

Let X andY be two pseudosymmetries of a syst&mDenote by
[X U Y] the set of generators of the involutive closure of the union of
the setsX andY of vector fields.
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Multivector pseudosymmetries

Commutation of pseudosymmetries

Let X andY be two pseudosymmetries of a syst&mDenote by

[X U Y] the set of generators of the involutive closure of the union of
the setsX andY of vector fields.

Theorem 5.

If X andY are two pseudosymmetries of a syst€rand the sefXU Y]

is finite, then this set also forms a pseudosymmetry of the syStem
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Multivector pseudosymmetries

Multivector fields and their Schouten bracket
Ther-th exterior degree of the modul(S) of vector fields or§*:

A D(8®) = spans){Xi A= AX : X1,.... % € D(S®)}.
Elements of the modul®* D(5*°) = @,., \' D(S>) are

multivector fieldson S, An elementX € \' D(S®) is a
homogeneouelement of degregX| =r.
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Multivector pseudosymmetries

Multivector fields and their Schouten bracket
Ther-th exterior degree of the modul(S) of vector fields or§*:

A D(8®) = spans){Xi A= AX : X1,.... % € D(S®)}.

Elements of the modul®* D(5*°) = @,., \' D(S>) are
multivector fieldson S, An elementX € \' D(S®) is a
homogeneouelement of degregX| =r.

The Schouten brackaf X = A%_; X, andY = AX_; Ygis

ZZ 1) X, Yg] AXL A - AXa A

a=15=1
AXsAYLA - AYg A=A Y,

This bracket is extended )" D(S>°) by linearity.
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Multivector pseudosymmetries

Properties of the Schouten bracket

Theorem 6.The following identities are valid for homogeneous
elementsX, Y, Z:

o [X,Y] = —(—=1)IXI=DI¥I=D[y, X] (antisymmetry of Schouten
bracket);

o (—1)(XI=DAZI=DIX, [V, Z]] + (—1)(M=DIXI=Dy, [z, X]]+
(=1)UZ=D{¥I=D(Z [X, Y]] = 0 (Jacobi identity for Schouten
bracket);

o [XAY,Z] = (—1)MIZ=D[X Z] AY + X A[Y, Z] (Poisson
identity).

The Schouten bracket makes the mod§jfeD(S*°) into a Lie
superalgebra if the degree of a homogeneous eleMienf\" D(S>)
is taken to be the integer— 1.
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Multivector pseudosymmetries

Multivector pseudosymmetries

Theorem 71If (Xy,...,Xq)" is a pseudosymmetry of systesih then
X = X1 A -+ A\ Xq satisfies the equalities

n
X,Di] =axX+ Y ZjxADj, i=1In, (6)
j=1

for somea; x € C*(S) andz; x € A1 D(S).
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Multivector pseudosymmetries

Theorem 71If (Xy,...,Xq)" is a pseudosymmetry of systesih then
X = X1 A -+ A\ Xq satisfies the equalities

n
X,Di] =axX+ Y ZjxADj, i=1In, (6)
j=1

for somea; x € C*(S) andz; x € A1 D(S).
A multivector fieldX on §*° satisfying the equality (6) is a
multivector pseudosymmetiof systems.
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Multivector pseudosymmetries

Theorem 71If (Xy,...,Xq)" is a pseudosymmetry of systesih then
X = X1 A -+ A\ Xq satisfies the equalities

n
X,Di] =axX+ Y ZjxADj, i=1In, (6)
j=1
for somea; x € C*(S) andz; x € A1 D(S).
A multivector fieldX on §*° satisfying the equality (6) is a
multivector pseudosymmetiof systems.

Theorem 8If X andY are multivector pseudosymmetries of a system,
thenX A 'Y is also a multivector pseudosymmetry of this system.
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Multivector pseudosymmetries

Multivector pseudosymmetries

Theinterior productof a multivector field = X; A --- A X, and a
p-formw, p > r:

ix(w) = (ix, 0---olix,)(w),

whereiy; is the interior product of the vector fiek].
Theorem 9.

ix0Z—Zoix =iz, XG/\ (8®), ZeD(S™®).
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Multivector pseudosymmetries

Multivector pseudosymmetries

Theinterior productof a multivector field = X; A --- A X, and a
p-formw, p > r:

ix(w) = (ix, 0---olix,)(w),

whereiy; is the interior product of the vector fiek].
Theorem 9.

ix0Z—Zoix =iz XG/\ (8%), ZeD(S™).

Theorem 10If X is a multivector pseudosymmetry of a syst&im
q=|X|, w € CIAY(S>), then

ix(D|w) = (D| + aLx)(ixw).
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Multivector pseudosymmetries

Multivector pseudosymmetries

A scalarC-differential operator of9A9(S°°) to CIAY(S>):

The set of all scalag-differential operators is a noncommutative ring
with respect to the composition operatiaifA9(S*°) is a left module
over this ring.

Theorem 10 = a multivector pseudosymmet¥/of a systemsS
is uniquely determined by its values at generators of the module
CINI(S>), q= |X].
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Examples

Example 3 For the Laplace equatias,y, + Ux,x, = O generators of
the moduleC?A?(S>) are

w? = _dCu(k,O) A dCu(k,l)7 wg = dCU(k,O) A dCU(k+1,O); k>0.
They are related by the equations
Da(wf) = D1(w5), A(D1(wf)+D2(wd)) = c(D1(wh) +D2(wh)),

where{cy} is some sequence of integers,= D? + D3.
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Examples

Example 3 For the Laplace equatias,y, + Ux,x, = O generators of
the moduleC?A?(S>) are

w? = _dCu(k,O) A dCu(k,l)7 wg = dCU(k,O) A dCU(k+1,O); k>0.
They are related by the equations
Da(wf) = D1(w5), A(D1(wf)+D2(wd)) = c(D1(wh) +D2(wh)),

where{cy} is some sequence of integers,= D? + D3.
If X is the multivector pseudosymmetry such that

ix(w)) =%, ix(wd) =x1, ix(wf)=0, ax=0, Zjx=0
foranyk > 0,i,j = 1,2. Then

X=xon 0 0 59 + R
- 18u 3U(170) Zau 8U(0’1) ou 8u(2,0)'
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Examples

Constructing coverings determined by a multivector
pseudosymmetry

ThelLie derivativeof g € F(S) alongX = Xy A -+ - A Xq:

q
Z q'X. X1A---A>§A--~/\Xq-

i=1

A functiong € F(S) is afirst integralof X if X(g) = 0.
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Examples

Constructing coverings determined by a multivector
pseudosymmetry

ThelLie derivativeof g € F(S) alongX = Xy A -+ - A Xq:

q
Z q'X. X1A---A>§A--~/\Xq-

i=1

A functiong € F(S) is afirst integralof X if X(g) = 0.

(X1A-AX)(@ =0 <= X(9 =0, i=1Laq
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Example 4 For

X—xz/\ 0 —xz/\ 0 +(9 0
N 18U 8U(170) 28u 8U(071) ou 8U(270)

the corresponding decomposable form is

(22— Zl)(ZZV%l,O) - ZlV(lo,l)) = B+3V - (2+2a),
vi— zw? vi— w2

(1L0) =~ "5 01 =
-7 n -2

the corresponding change of variables is

1
n=x, =X, W=Uu W= Uc1,0) + Y0,1)

vi= XaU(1,0) + X1U(0,1)> Ve = Uz,0) T U,1) + (X2 — X1)U2,0)-
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Example 5.In the situation of Example 3, but whég(w3) = —1 and
ix(wK) = 0 for otherk, i, we have

x=o, 0 9 ,0 [ 9 90
ou 8U(370) 8u(170) 8U(270) 8U(071) aU(l71) '

The decomposable form fotis
V%l,o) = V0,1) V(lo,l) = —Vfl,O)a W21 = Vl’ W0 = V2
The change of variables is
n=x, =X, V= Ui2,1), V= Uig0, W=U

Thus the dimension of a covering can be greater than the degree of th
corresponding multivector pseudosymmetry.
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Example 6: the Kapitsa pendulum

m

‘If

| o (9 W : u
G =p+ysina, z=u p=(7 - cosasina - -pcosa.
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Examples

This system is equivalent to the system

v=a .2’ a :ICOSOt7
y=ale)d’, ale)=1_5"
where
y= 92 sina’

Let us compute all the one-dimensional integrable evolution
pseudosymmetries, o of this system.
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Examples

Denote byFs is the ring of smooth functions depending on
ty,a,V d,...,a fors > 0. The defining equation for
pseudosymmetries is

(Dt + A)?(py) = 2ac (Dt + A)(pa) + & 62 9o,

wherep = (¢y, @) is a generating matrix antl, ¢y, ¢, € Fs for
somes > 0.

The three cases are possible:

) oy #0, pa £0;

) ¢y #0, pa =0;

M ¢y=0, g, Z0.
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Examples

In case 1) the columiil, ) = goa/goy)T is also a generating matrix of
an integrable pseudosymmetry and

Di(A) + A% = 2a(a) & (D + A)(¢) + & (@) &2 . ()

1/16‘7:3\-7:5—1 - Aefs\Fs_l.
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In case 1) the columiil, ) = goa/goy)T is also a generating matrix of
an integrable pseudosymmetry and

Di(A) + A2 = 2a(a) & (Dt + A)(¥) + @ (a)é®y.  (7)
Ve Fs\Fso1 — AcFs\ Fs1.

0
N Z(DJ +ANY) e =
k>0 a9

Iy a: Fk = Fsik = s= 0(from the finiteness conditign

Thus,y andA are functions of, y, o, y only.
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Examples

Finding successively the coefficientsit 62, ¥, Y, ¢, andy in (7),
we get

b+c y /
_ A— b= d
= Ay ) y+ 2 vada,

wherecy, ¢, are arbitrary constants.
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Finding successively the coefficientsit 62, ¥, Y, ¢, andy in (7),
we get

b+c
2/aly+c) "y + 2’

wherecy, ¢, are arbitrary constants.

Similarly, in the cases II) and Ill) we get the following
pseudosymmetries:

N oy=1 ¢0o=0 A= t+c , C3 = const, or
ey=1 9o =0 A=0;

m oy=0, 9o =1 A= —

= , b= /\/5da

2a "
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Examples

These pseudosymmetries define the following decomposable forms:

0o (v2 o 1 2 _ 2 __B — v
1) Yz = (Vl + 2V1V2) Vo V1= NETo% V2 = y+Cy?

W = Vo(W+ Cp), W=Y;

Vi = —(t+ cz)a(va)V3 vi=y-y(t+cs), V2=a,
2) _ W—Vvq W=V

T ot+4cg? - y’
V1 = a(Vo)V3 Vi=y, V2=aq,
W = vy, W=Y;,

p V=Y,
N — _V_
3 W= V' aw)? W= q.
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Commutation of the obtained pseudosymmetries

Let 91 and9D3 be the pseudosymmetries corresponding to cases (1)
and (3), and leb, and9,4 be the pseudosymmetry corresponding to
case (2). Then

1 h()
9.9 = —(HD1—9 .. D] =
(D1, 92] y+02(1 2), [91,93] v Y
1
[917 94] = m(al - 94)7 [827 93] = oa [927 54] = 07
/
95,94 =0, h(a) = 2EWL 1

4a3/2 2

Thus, any nonempty subset of the tupt®;, 9,, 93,94} generates
an integrable pseudosymmetry of the system.
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We obtain 6 two-dimensional, 4 three-dimensional, and 1
four-dimensional integrable pseudosymmetries and 11 coverings from
the system. The decomposable forms corresponding to the
pseudosymmetrig®1, D3), (D1, D2, D3), and(D1, D2, D3, Da4) are:

Wy = V(W]_ + Cz)

_ Y _ — o
Wo = o/ VD) (witcy) V=¥ M=y, We=o
2= awz)  ?

_ Wi(ttcs)-wi—Cp

Vi

v .

_ Y(t+cg)—y—C _ —
Wo — Wi (t+C3) —W1—Cp - a(a)a?z Wi =Yy, W2=aq;
2= va(wa) ’

Wl = W\; g
. W VZV’ Wi =Y, Wy=oa.
Wo = 1

a(wy)’
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