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Posing the problem: coverings over equations

E : F(z, v, vσ) = 0

v = (v1, . . . , vm), z = (z1, . . . , zn),

vσ =
(

∂|σ|v1

∂zi1
1 . . . ∂zin

n
, . . . ,

∂|σ|vm

∂zi1
1 . . . ∂zin

n

)
, σ = (i1, . . . , in).
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The system̃E covers the systemE , ν is a covering overE .
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Posing the problem: coverings from equations

S : G(x,u,uσ) = 0, x = (x1, . . . , xn), u = (u1, . . . ,um0)

(z, v,w) = φ(x,u,uσ) ↓ ↑ (x,u) = φ−1(z, v,w, vσ)

Ẽ :
{

F(z, v, vσ) = 0,
∂w
∂zi

= Wi(z,w, v, vσ), i = 1,n,

↓ ν

E : F(z, v, vσ) = 0,

φ is aC-transformation, the systemS covers the systemE , ν ◦ φ is a
covering fromS, the fields∂/∂wi constitute a pseudosymmetry ofS,
the system̃E is a decomposable form of the covering.
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Example 1: the Laplace equation

S : u(2,0) + u(0,2) = 0, u2
(2,0) + u2

(1,1) 6= 0,

theC–transformationφ:

z1 = u(1,0), z2 = u(0,1), v = u, w1 = x1, w2 = x2,

the inverse transformationφ−1: x1 = w1, x2 = w2, u = v,
the decomposable form:

Ẽ : v(2,0) + v(0,2) = 0, w1
(1,0) =

z1v(1,0) − z2v(0,1)

z2
1 + z2

2

= −w2
(0,1),

w1
(0,1) =

z1v(0,1) + z2v(1,0)

z2
1 + z2

2

= w2
(1,0),

the pseudosymmetry:(∂/∂x1, ∂/∂x2).

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

Outline

Pseudosymmetries of differential equations

Description of coverings from equations

Multivector pseudosymmetries

Examples

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

Outline

Pseudosymmetries of differential equations

Description of coverings from equations

Multivector pseudosymmetries

Examples

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

Outline

Pseudosymmetries of differential equations

Description of coverings from equations

Multivector pseudosymmetries

Examples

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

Outline

Pseudosymmetries of differential equations

Description of coverings from equations

Multivector pseudosymmetries

Examples

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

References

I. S. Krasil’shchik and A. M. Vinogradov.
Nonlocal symmetries and the theory of coverings.Acta Appl.
Math., 2:79-86, 1984.

V. V. Sokolov.
Pseudosymmetries and differential substitutions.Funct. Anal.
Appl., 22(2):121-129, 1988.

VC.
Coverings and Integrable Pseudosymmetries of Differential
Equations.Differential Equations, 53(11):1428-1439, 2017.

VC.
Coverings and multivector pseudosymmetries of differential
equations.Differ. Geom. Appl.74, 2021.

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

References

I. S. Krasil’shchik and A. M. Vinogradov.
Nonlocal symmetries and the theory of coverings.Acta Appl.
Math., 2:79-86, 1984.

V. V. Sokolov.
Pseudosymmetries and differential substitutions.Funct. Anal.
Appl., 22(2):121-129, 1988.

VC.
Coverings and Integrable Pseudosymmetries of Differential
Equations.Differential Equations, 53(11):1428-1439, 2017.

VC.
Coverings and multivector pseudosymmetries of differential
equations.Differ. Geom. Appl.74, 2021.

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

References

I. S. Krasil’shchik and A. M. Vinogradov.
Nonlocal symmetries and the theory of coverings.Acta Appl.
Math., 2:79-86, 1984.

V. V. Sokolov.
Pseudosymmetries and differential substitutions.Funct. Anal.
Appl., 22(2):121-129, 1988.

VC.
Coverings and Integrable Pseudosymmetries of Differential
Equations.Differential Equations, 53(11):1428-1439, 2017.

VC.
Coverings and multivector pseudosymmetries of differential
equations.Differ. Geom. Appl.74, 2021.

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

References

I. S. Krasil’shchik and A. M. Vinogradov.
Nonlocal symmetries and the theory of coverings.Acta Appl.
Math., 2:79-86, 1984.

V. V. Sokolov.
Pseudosymmetries and differential substitutions.Funct. Anal.
Appl., 22(2):121-129, 1988.

VC.
Coverings and Integrable Pseudosymmetries of Differential
Equations.Differential Equations, 53(11):1428-1439, 2017.

VC.
Coverings and multivector pseudosymmetries of differential
equations.Differ. Geom. Appl.74, 2021.

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

The spaces of infinite jets

Consider an infinite-dimensional spaceJ∞ with coordinates

xi , uj , uj
σ, i = 1,n, j = 1,m, |σ| ≥ 0.

Thetotal derivativewith respect toxi onJ∞:

Di =
∂

∂xi
+

m∑
j=1

∑
|σ|≥0

uj
σ+1i

∂

∂uj
σ

.

Theinfinite prolongationof systemS : Gα(x,u,uσ) = 0, α = 1, r, is
given by

S∞ : DσGα = 0, |σ| ≥ 0, α = 1, r,

whereDσ = Di1
1 ◦ . . . ◦ Din

n for σ = (i1, . . . , in), S∞ ⊂ J∞.
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The Cartan distribution
TheCartan distributiononS∞:

CD(S) = spanC∞(S∞){D1
∣∣
S∞ , . . . ,Dn

∣∣
S∞}.

TheCartan formsonS∞:

dCg = dg−
n∑

i=1

Di(g)dxi , g ∈ C∞(S∞).

CΛ1(S) = spanC∞(S∞){dCg : g ∈ C∞(S∞)}.

CkΛk(S) = CΛ1(S) ∧ · · · ∧ CΛ1(S)︸ ︷︷ ︸
k times

.

ω ∈ CkΛk(S) ⇐⇒ Di
∣∣
S∞cω = 0, i = 1,n.
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Mappings of diffieties

A mappingφ : S∞ −→ E∞ is C–transformationif

φ is smooth, i.e.,φ∗
(
C∞(E∞)

)
⊂C∞(S∞), φ∗(g) = g ◦ φ;

there exists a smooth inverse mapping;

φ∗(CD(S)) = CD(E).

A smooth mappingν : S∞ −→ E∞ is acoveringif

the tangent mappingν∗,θ is a vector space epimorphism for any
θ ∈ S∞;

ν∗(CD(S)) = CD(E);

the dim kerν∗,θ is the same for anyθ ∈ S∞ (rankν).
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Conditions for fibers of coverings

Fβ(z, v, . . . , vσ, . . .) = 0, β = 1, r1, (1)

∂wj

∂zi
= Wj

i (z,w, v, . . . , vσ, . . .), i = 1,n, j = 1,q, (2)

The total derivative with respect toxi for system (1)–(2) has the form

Di = Ďi +
q∑

j=1

Wj
i (x,w,u, . . . ,uσ, . . .)

∂

∂wj ,

whereĎi is the total derivative w.r.t.xi for (1).

[X,Di ] = AiX, i = 1,n, (3)

whereX =
(
∂/∂w1, . . . , ∂/∂wq

)T
, Ai =

(
∂Wj

i /∂ws
)

s,j=1,q
.
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whereĎi is the total derivative w.r.t.xi for (1).

[X,Di ] = AiX, i = 1,n, (3)

whereX =
(
∂/∂w1, . . . , ∂/∂wq

)T
, Ai =

(
∂Wj

i /∂ws
)

s,j=1,q
.

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

Conditions for fibers of coverings

Fβ(z, v, . . . , vσ, . . .) = 0, β = 1, r1, (1)

∂wj

∂zi
= Wj

i (z,w, v, . . . , vσ, . . .), i = 1,n, j = 1,q, (2)

The total derivative with respect toxi for system (1)–(2) has the form

Di = Ďi +
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Pseudosymmetries of differential equations
The invariant version of (3):

[X,Di ] = AiX + BiD, i = 1,n, (4)

whereD = (D1, . . . ,Dn)T. A columnX of vector fields satisfying (4)
is apseudosymmetryof the systemS. The relations (4) and the Jacobi
identity imply:

Dj(Ai)− Di(Aj) + AjAi − AiAj = 0, ∀i, j, (5)

Dj(Bi)− Di(Bj) + AjBi − AiBj = 0, ∀i, j.

Equations (5) are the Maurer–Cartan equations.

(5) =⇒ [Di + Ai ,Dj + Aj ] = 0.

If Ai ≡ 0 for all i, thenX is a column of higher symmetries.
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Pseudosymmetries of infinite jets spaces

Theorem 1.A q-columnX is a pseudosymmetry ofJ∞ iff

X = �ϕ,A + MD,

whereϕ is aq×m matrix of functions onJ∞, A = (A1, . . . ,An) is a
tuple ofq× q matrices satisfying (5),M is aq× n matrix of arbitrary
functions onJ∞, the term�ϕ,A has the form

�ϕ,A =
∑
σ

(D + A)σ(ϕ)
∂

∂uσ
,

where(D + A)σ = (D1 + A1)i1 ◦ . . . ◦ (Dn + An)in, σ = (i1, . . . , in), is

a (q× q) matrix differential operator,
∂

∂uσ
=

( ∂

∂u1
σ

, . . . ,
∂

∂um
σ

)T
.
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Defining equations for pseudosymmetries

Theorem 2.Let
S : G(x,u,uσ) = 0

be a formally integrable system. Then a columnX is a
pseudosymmetry ofS iff X is the restriction of�ϕ,A + MD to S∞,
where the matrixϕ = (ϕij ) satisfies∑

j,σ

∂G

∂uj
σ

(D + A)σ(ϕj)
∣∣∣
S∞

= 0, ϕj = (ϕ1j , . . . , ϕqj)T.

The matrixϕ is thegenerating matrixof the pseudosymmetry, and
�ϕ,A is theevolution pseudosymmetry.
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∂uj
σ

(D + A)σ(ϕj)
∣∣∣
S∞

= 0, ϕj = (ϕ1j , . . . , ϕqj)T.

The matrixϕ is thegenerating matrixof the pseudosymmetry, and
�ϕ,A is theevolution pseudosymmetry.

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

Integrable pseudosymmetries

A columnX of vector fieldsX1, . . . ,Xq onS∞ is anintegrable
pseudosymmetryof the systemS if

X = (X1, . . . ,Xq)T is a pseudosymmetry ofS;

X1, . . . ,Xq generate an involutive distribution of dimensionq;

thefiniteness condition: there exists a ringK such that
(a) F0(S) ⊂ K ⊂ Fl(S) for somel ≥ 0;
(b) Xi(K) ⊂ K for any i = 1,q.

HereFi(S) consists of smooth functions oft,u, . . . , uσ, |σ| ≤ i.
Example 2.
The fields∂/∂w1, . . . , ∂/∂wq form an integrable pseudosymmetry of
system (1)–(2),K is the ring of smooth functions of
t,w, v, . . . , vσ, |σ| ≤ s, wheres is the order of system (2).
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Properties of integrable pseudosymmetries

The distribution generated byX1, . . . ,Xq is integrable.

The distribution generated byX1, . . . ,Xq,D1, . . . ,Dn is
involutive, but is not integrable.

Any finite-dimensional Lie algebra of classical symmetries of a
system forms its integrable pseudosymmetry.

Any C-transformation maps integrable pseudosymmetries into
integrable pseudosymmetries.

An integrable pseudosymmetryX = (X1, . . . ,Xq)T determines a
coveringif the fibers of the covering coincide with the maximal
integral manifolds of the distribution generated byX1, . . ., Xq.
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Description of coverings
Let S be a formally integrable system, and letX = (X1, . . . ,Xq)T be
an integrable pseudosymmetry ofS. A point θ ∈ S∞ is aregular
pointof X if

the fieldsX1, . . . ,Xq, D1, . . . ,Dn are linearly independent atθ;

the subspaces{df |θ′ ∈ T∗θ′ : f ∈ K} and{df |θ′ ∈ T∗θ′ : f ∈ DlK}
have constant dimension in some neighborhood ofθ, whereDlK
is the ring generated by the functionsDσ(f ), f ∈ K, |σ| ≤ l,
F0(S) ⊂ K ⊂ Fl(S).

Theorem 3.

If X is an integrable pseudosymmetry of a systemS andθ ∈ S∞
is a regular point ofX, thenX determines a covering from a
neighborhood ofθ.

For any covering from a systemS there exists an integrable
pseudosymmetry ofS determining this covering.
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Algorithm for constructing coverings
Let X = (X1, . . . ,Xq)T be an integrable pseudosymmetry of a system
S and letθ be a regular point ofX.
Step 1.Find an integers such that the coefficients of matrices
A1, . . . ,An andB1, . . . ,Bn belong toDsK.
Step 2.Find functionsg1, . . . ,gp such that

1. g1, . . . ,gp ∈ DsK;

2. g1, . . . ,gp are common first integrals ofX1, . . . ,Xq;

3. dg1, . . . ,dgp are linearly independent at each point;

4. The set{g1, . . . ,gp} is a maximal set satisfying 1-3.

Step 3.Find functionsw1, . . . ,wq ∈ F(S) such that the matrix(
Xi(wj)(θ)

)
is nonsingular.

Step 4.Choose new independent variablesx1, . . . , xn among the
functionsg1, . . . ,gp such that the matrix

(
Di(xj)(θ)

)
is nonsingular.

By u denote the set of the functionsg1, . . . ,gp that are notx1, . . . , xn.
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Integrable pseudosymmetries

Theorem 4.Suppose a columnX = (X1, . . . ,Xq)T is an integrable
pseudosymmetry of a systemS andN is a nonsingularq× q matrix of
functions onS∞. Then

the productNX is also an integrable pseudosymmetry of the
systemS;

the integrable pseudosymmetriesX andNX determine the same
covering;

if matricesAi andBi correspond toX (see (4)), then the matrices
NAiN−1 − Di(N)N−1 andNBi correspond toNX.

Methods for solving equations for pseudosymmetries are similar to
methods for solving equations for higher symmetries. To find
integrable pseudosymmetries, these methods should be combined
with using Theorem 4 and the finiteness condition.
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Commutation of pseudosymmetries

Let X andY be two pseudosymmetries of a systemS. Denote by
[X ∪ Y] the set of generators of the involutive closure of the union of
the setsX andY of vector fields.
Theorem 5.
If X andY are two pseudosymmetries of a systemS and the set[X∪Y]
is finite, then this set also forms a pseudosymmetry of the systemS.
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Multivector fields and their Schouten bracket
Ther-th exterior degree of the moduleD(S∞) of vector fields onS∞:∧r

D(S∞) = spanF(S){X1 ∧ · · · ∧ Xr : X1, . . . ,Xr ∈ D(S∞)}.

Elements of the module
∧∗D(S∞) =

⊕
r>0

∧r D(S∞) are
multivector fieldsonS∞. An elementX ∈

∧r D(S∞) is a
homogeneouselement of degree|X| = r.
TheSchouten bracketof X =

∧s
α=1 Xα andY =

∧k
β=1 Yβ is

[X,Y] =
s∑

α=1

k∑
β=1

(−1)α+β [Xα,Yβ ] ∧ X1 ∧ · · · ∧ X̂α ∧ . . .

∧ Xs∧ Y1 ∧ · · · ∧ Ŷβ ∧ · · · ∧ Yk,

This bracket is extended to
∧∗D(S∞) by linearity.
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Properties of the Schouten bracket

Theorem 6.The following identities are valid for homogeneous
elementsX,Y,Z:

[X,Y] = −(−1)(|X|−1)(|Y|−1)[Y,X] (antisymmetry of Schouten
bracket);

(−1)(|X|−1)(|Z|−1)[X, [Y,Z]] + (−1)(|Y|−1)(|X|−1)[Y, [Z,X]]+
(−1)(|Z|−1)(|Y|−1)[Z, [X,Y]] = 0 (Jacobi identity for Schouten
bracket);

[X ∧ Y,Z] = (−1)|Y|(|Z|−1)[X,Z] ∧ Y + X ∧ [Y,Z] (Poisson
identity).

The Schouten bracket makes the module
∧∗D(S∞) into a Lie

superalgebra if the degree of a homogeneous elementX ∈
∧r D(S∞)

is taken to be the integerr − 1.
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Multivector pseudosymmetries

Theorem 7.If (X1, . . . ,Xq)T is a pseudosymmetry of systemS, then
X = X1 ∧ · · · ∧ Xq satisfies the equalities

[X,Di ] = ai,XX +
n∑

j=1

Zij ,X ∧ Dj , i = 1,n, (6)

for someai,X ∈ C∞(S∞) andZij ,X ∈
∧q−1D(S∞).

A multivector fieldX onS∞ satisfying the equality (6) is a
multivector pseudosymmetryof systemS.

Theorem 8.If X andY are multivector pseudosymmetries of a system,
thenX ∧ Y is also a multivector pseudosymmetry of this system.
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n∑

j=1

Zij ,X ∧ Dj , i = 1,n, (6)

for someai,X ∈ C∞(S∞) andZij ,X ∈
∧q−1D(S∞).

A multivector fieldX onS∞ satisfying the equality (6) is a
multivector pseudosymmetryof systemS.

Theorem 8.If X andY are multivector pseudosymmetries of a system,
thenX ∧ Y is also a multivector pseudosymmetry of this system.
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Multivector pseudosymmetries

Theinterior productof a multivector fieldX = X1 ∧ · · · ∧ Xr and a
p-form ω, p≥ r:

iX(ω) = (iXr ◦ · · · ◦ iX1)(ω),

whereiXi is the interior product of the vector fieldXi .
Theorem 9.

iX ◦ Z− Z ◦ iX = i[X,Z], X ∈
∧∗

D(S∞), Z ∈ D(S∞).

Theorem 10.If X is a multivector pseudosymmetry of a systemS,
q = |X|, ω ∈ CqΛq(S∞), then

iX(Dlω) = (Dl + al,X)(iXω).
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A scalarC-differential operator ofCqΛq(S∞) to CqΛq(S∞):

ω 7→
∑
|σ|≤k

aσDσ(ω), aσ ∈ F(S).

The set of all scalarC-differential operators is a noncommutative ring
with respect to the composition operation,CqΛq(S∞) is a left module
over this ring.

Theorem 10 =⇒ a multivector pseudosymmetryX of a systemS
is uniquely determined by its values at generators of the module
CqΛq(S∞), q = |X|.
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Example 3.For the Laplace equationux1x1 + ux2x2 = 0 generators of
the moduleC2Λ2(S∞) are

ωk
1 = −dCu(k,0) ∧ dCu(k,1), ωk

2 = dCu(k,0) ∧ dCu(k+1,0), k ≥ 0.

They are related by the equations

D2(ωk
1) = D1(ωk

2), ∆k(D1(ω0
1)+D2(ω0

2)
)

= ck
(
D1(ωk

1)+D2(ωk
2)

)
,

where{ck} is some sequence of integers,∆ = D2
1 + D2

2.
If X is the multivector pseudosymmetry such that

iX(ω0
1) = x2, iX(ω0

2) = x1, iX(ωk
i ) = 0, ai,X = 0, Zij ,X = 0

for anyk > 0, i, j = 1,2. Then

X = x1
∂

∂u
∧ ∂

∂u(1,0)
− x2

∂

∂u
∧ ∂

∂u(0,1)
+
∂

∂u
∧ ∂

∂u(2,0)
.
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Constructing coverings determined by a multivector
pseudosymmetry

TheLie derivativeof g ∈ F(S) alongX = X1 ∧ · · · ∧ Xq:

X(g) =
q∑

i=1

(−1)q−iXi(g)X1 ∧ · · · ∧ X̂i ∧ · · · ∧ Xq.

A functiong ∈ F(S) is afirst integralof X if X(g) ≡ 0.

(X1 ∧ · · · ∧ Xq)(g) ≡ 0 ⇐⇒ Xi(g) ≡ 0, i = 1,q.
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Example 4.For

X = x1
∂

∂u
∧ ∂

∂u(1,0)
− x2

∂

∂u
∧ ∂

∂u(0,1)
+
∂

∂u
∧ ∂

∂u(2,0)

the corresponding decomposable form is

(z2 − z1)(z2v1
(1,0) − z1v1

(0,1)) = (z2
2 + z2

1)v
2 − (z2 + z1)v1,

w1
(1,0) =

v1 − z1w2

z2 − z1
, w1

(0,1) =
v1 − z2w2

z1 − z2
,

the corresponding change of variables is

z1 = x1, z2 = x2, w1 = u, w2 = u(1,0) + u(0,1),

v1 = x2u(1,0) + x1u(0,1), v2 = u(1,0) + u(0,1) + (x2 − x1)u(2,0).
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Example 5.In the situation of Example 3, but wheniX(ω1
2) = −1 and

iX(ωk
i ) = 0 for otherk, i, we have

X =
∂

∂u
∧ ∂

∂u(3,0)
− ∂

∂u(1,0)
∧ ∂

∂u(2,0)
+

∂

∂u(0,1)
∧ ∂

∂u(1,1)
.

The decomposable form forX is

v1
(1,0) = v2

(0,1), v1
(0,1) = −v2

(1,0), w(2,1) = v1, w(4,0) = v2.

The change of variables is

z1 = x1, z2 = x2, v1 = u(2,1), v2 = u(4,0), w = u.

Thus the dimension of a covering can be greater than the degree of the
corresponding multivector pseudosymmetry.
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Example 6: the Kapitsa pendulum

α̇ = p +
u
l

sinα, ż = u, ṗ =
(

g
l
− u2

l2
cosα

)
sinα− u

l
pcosα.
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This system is equivalent to the system

ÿ = a(α) α̇2, a(α) = l
cosα

sin2α
,

where

y = z+ g
t2

2
− l

∫
dα

sinα
.

Let us compute all the one-dimensional integrable evolution
pseudosymmetries�ϕ,A of this system.
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Denote byFs is the ring of smooth functions depending on
t, y, α, ẏ, α̇, . . . , α(s) for s≥ 0. The defining equation for
pseudosymmetries is

(Dt + A)2(ϕy) = 2a α̇ (Dt + A)(ϕα) + a′ α̇2ϕα,

whereϕ = (ϕy, ϕα)T is a generating matrix andA, ϕy, ϕα ∈ Fs for
somes≥ 0.
The three cases are possible:
I) ϕy 6≡ 0, ϕα 6≡ 0;
II) ϕy 6≡ 0, ϕα ≡ 0;
III) ϕy ≡ 0, ϕα 6≡ 0.
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In case I) the column(1, ψ = ϕα/ϕy)T is also a generating matrix of
an integrable pseudosymmetry and

Dt(A) + A2 = 2a(α) α̇ (Dt + A)(ψ) + a′(α) α̇2ψ. (7)

ψ ∈ Fs \ Fs−1 =⇒ A ∈ Fs \ Fs−1.

�ψ,A = · · ·+
∑
k≥0

(DJ + A)k(ψ)
∂

∂α(k)
=⇒

�ψ,A : Fk → Fs+k =⇒ s = 0 (from the finiteness condition).

Thus,ψ andA are functions oft, y, α, ẏ only.

Chetverikov Coverings and multivector pseudosymmetries



Pseudosymmetries of differential equations
Description of coverings from equations

Multivector pseudosymmetries
Examples

In case I) the column(1, ψ = ϕα/ϕy)T is also a generating matrix of
an integrable pseudosymmetry and

Dt(A) + A2 = 2a(α) α̇ (Dt + A)(ψ) + a′(α) α̇2ψ. (7)

ψ ∈ Fs \ Fs−1 =⇒ A ∈ Fs \ Fs−1.

�ψ,A = · · ·+
∑
k≥0

(DJ + A)k(ψ)
∂

∂α(k)
=⇒

�ψ,A : Fk → Fs+k =⇒ s = 0 (from the finiteness condition).

Thus,ψ andA are functions oft, y, α, ẏ only.
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Finding successively the coefficients atα̇3, α̇2, ẏ2, ẏα̇, α̇, andẏ in (7),
we get

ψ =
b + c1

2
√

a(y + c2)
, A =

ẏ
y + c2

, b =
∫ √

adα,

wherec1, c2 are arbitrary constants.

Similarly, in the cases II) and III) we get the following
pseudosymmetries:
II) ϕy = 1, ϕα = 0, A = 1

t+c3
, c3 = const, or

ϕy = 1, ϕα = 0, A = 0;
III) ϕy = 0, ϕα = 1, A = −a′ α̇

2a .
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we get

ψ =
b + c1

2
√

a(y + c2)
, A =

ẏ
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These pseudosymmetries define the following decomposable forms:

1)

{
v̇2 = (v̇2

1 + 1
2v1v2)2 − v2

2

ẇ = v2(w + c2),

v1 = β√
y+c2

, v2 = ẏ
y+c2

,

w = y;

2)

{
v̇1 = −(t + c3)a(v2)v̇2

2

ẇ = w−v1
t+c3

,

v1 = y− ẏ(t + c3), v2 = α,

w = y;{
v̇1 = a(v2)v̇2

2

ẇ = v1,

v1 = ẏ, v2 = α,

w = y;

3) ẇ =
√

v̈
a(w) ,

v = y,

w = α.
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Commutation of the obtained pseudosymmetries

Let �1 and�3 be the pseudosymmetries corresponding to cases (1)
and (3), and let�2 and�4 be the pseudosymmetry corresponding to
case (2). Then

[�1,�2] =
1

y + c2
(�1 −�2), [�1,�3] =

h(α)
y + c2

�3,

[�1,�4] =
1

y + c2
(�1 −�4), [�2,�3] = 0, [�2,�4] = 0,

[�3,�4] = 0, h(α) =
(b + c1)a′

4a3/2
− 1

2
.

Thus, any nonempty subset of the tuple{�1,�2,�3,�4} generates
an integrable pseudosymmetry of the system.
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We obtain 6 two-dimensional, 4 three-dimensional, and 1
four-dimensional integrable pseudosymmetries and 11 coverings from
the system. The decomposable forms corresponding to the
pseudosymmetries(�1,�3), (�1,�2,�3), and(�1,�2,�3,�4) are: ẇ1 = v(w1 + c2)

ẇ2 =
√

(v̇+v2)(w1+c2)
a(w2)

,
v = ẏ

y+c2
, w1 = y, w2 = α;

 ẅ1 = ẇ1(t+c3)−w1−c2
v

ẇ2 =
√

ẇ1(t+c3)−w1−c2
va(w2)

,
v = ẏ(t+c3)−y−c2

a(α) α̇2 , w1 = y, w2 = α;


...
w1 = vẅ1

ẇ2 =
√

ẅ1
a(w2)

,
v =

...
y
ÿ , w1 = y, w2 = α.
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THANK YOU
FOR YOUR ATTENTION
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