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Alexandre Mikhailovich Vinogradov
(obituary)

On 20 September 2019, Alexandre Mikhailovich Vinogradov, a remarkable
mathematician and an extraordinary person, passed away.

He was born on 18 February 1938 in Novorossiysk. During World War II he
and his mother were evacuated to Kungur (his father served in the army), and
later his parents settled in Kuntsevo, at that time not yet a part of Moscow. In
1955 he enrolled in the Faculty of Mechanics and Mathematics at Moscow State
University, and in 1960 he became a graduate student. After defending his Ph.D.
thesis in 1964, he taught students at the Moscow Mining Institute for a year. Then
N. V. Efimov, who was then the dean, invited Vinogradov to work in the Depart-
ment of Higher Geometry and Topology of the Faculty of Mechanics and Math-
ematics (P. S. Alexandrov was head of the department at that time), where he
worked until his departure to Italy in 1990. He became a doctor of the physical and
mathematical sciences in 1984. In 1993–2010 he was a professor at the University
of Salerno (Italy).

When Vinogradov was only a second-year undergraduate student, he published
two papers on number theory (jointly with B.N. Delaunay and D.B. Fuchs). How-
ever, towards the end of his term at the university his interests changed: in his
senior year and in graduate school he began to study algebraic topology in the
seminar of A. S. Schwarz (Shvarts). His Ph.D. thesis, under the formal supervision
of V. G. Boltyansky, was on the homotopy properties of the space of embeddings of
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a circle in a sphere or a ball. One of his first papers (1958) concerned the Adams
spectral sequence, which at that time was rightly considered the top of algebraic
topology. In his note [1], he announced a solution of a problem of F. Adams on
the connection between higher cohomological operations and the Adams filtration
of stable homotopy groups of spheres, and Adams wrote a favourable review of the
note. Vinogradov worked on problems in algebraic and differential topology up
until the early 1970s. From 1967 he led a research seminar on the same subject.

For the second and last time, Vinogradov radically changed the area of his math-
ematical activities at the turn of the decade 1960–1970. Inspired by ideas of Sophus
Lie, he began to think through the foundations of the geometric theory of partial
differential equations. After reviewing the work of D. Spencer, H. Goldschmidt and
D. Quillen on formal solvability, he embarked on an investigation of the algebraic
and, in particular, cohomological aspects of solvability.

In 1972, his short article [2] “The logic algebra for the theory of linear differential
operators” appeared in Doklady Akademii Nauk SSSR1(it was not easy to publish
lengthy texts in those years). There he constructed the so-called basic functors of
differential calculus in commutative algebras. On just four pages of the journal text
he showed in an elegant manner that the category of modules over a commutative
algebra with unit is sufficient to define and study the fundamental properties of
concepts such as vector fields, differential forms, jets, linear differential operators,
and so on, and that their geometric prototypes arise if we choose the algebra of
smooth functions on a manifold as the algebra, and the spaces of sections of vector
bundles over the manifold as modules. Later, an extended version of this article
became the first chapter of the book [3] and was partially included in [4]. A mod-
ernised version of the theory was published recently in [5], and applications of it to
the construction of an algebraic model of Hamiltonian mechanics were considered
in [6].

We should note here that Vinogradov was a natural ‘mathematical polyglot’: he
easily switched from the language of algebra to that of differential geometry and
often used a ‘dictionary’ for (sometimes not at all trivial) translations of statements
familiar in classical differential geometry into the language of geometry of infinitely
extended equations. Such multilingualism helped him to produce new meaningful
constructions, definitions, and statements.2 He was always attracted by the pos-
sibility of an invariant, coordinate-free (and, hence, elegant) exposition, be it in
Hamiltonian mechanics [8] or geometry [9].

His approach to non-linear differential equations as geometric objects with a gen-
eral theory and applications, was described in detail in the monographs [3] and [10],
as well as the papers [11] and [12]. He combined infinitely extended equations into
a category [13] whose objects he called diffieties (differential varieties), and for
studying diffieties he developed a theory which became known as secondary calcu-
lus3 [14], [15]. Central to this theory is the C -spectral sequence (the Vinogradov
spectral sequence), which was announced in [16] and later described in detail in [17].

1Partly translated into English as Soviet Mathematics. Doklady.
2For example, in this way he came to the concept of a differential cover [7], which is central

to the non-local geometry of differential equations and turns out to be extremely important for
understanding a number of structures related to integrable systems.

3By analogy with secondary quantisation.
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The E1-term of this spectral sequence gives a uniform cohomological approach
to many previously scattered concepts and statements, including Lagrangian for-
malism with constraints, conservation laws, cosymmetries, Noether’s theorem, and
the Helmholtz criterion in the inverse problem of the calculus of variations (for
arbitrary non-linear differential operators), greatly expanding the understanding of
these classical statements. A special case of the C -spectral sequence (corresponding
to the ‘empty’ equation, that is, the space of infinite jets) is the so-called variational
bicomplex.

The results of [16] were subsequently generalised by R. L. Bryant and P. A. Grif-
fiths [18] (who used the language of exterior differential systems), A.M. Verbovet-
sky [19] (using the horizontal de Rham complex), and T. Tsujishita [20]. The ideas
underlying the construction of the C -spectral sequence and the results naturally
arising from these ideas were the first steps towards what is now called cohomolog-
ical physics (for example, see [21] by J. Stasheff).

The important papers [22] and [23] also belong to this area. In the first, Vino-
gradov constructed a new bracket on the graded algebra of linear transformations of
a cochain complex. The Vinogradov bracket (which he called the L-commutator) is
skew-symmetric and satisfies the Jacobi identity up to a coboundary. His construc-
tion anticipated the general concept of a derived bracket on the Loday differen-
tial algebra (or Leibniz algebra), introduced by Y. Kosmann-Schwarzbach in 1996;
see [24]. The Vinogradov bracket is a skew-symmetric version of a derived bracket
constructed from the coboundary operator. Derived brackets and their generali-
sations play an extremely important role in modern applications of homotopy Lie
algebras and Lie algebroids. Vinogradov’s paper [22] was pioneering in this area.

In particular, Vinogradov showed that the classical Schouten bracket (on mul-
tivector fields) and Nijenhuis bracket (on vector fields with coefficients in differ-
ential forms) are the restrictions of his bracket to the corresponding subalgebras
of superdifferential operators on the exterior algebra of forms. In a subsequent
joint paper with A. Cabras [23], he applied these results to Poisson geometry by
constructing new examples of derived differential geometric brackets.

Modern developments lead to generalisations of Lie (super)algebras with ‘higher
brackets’ (that is, brackets with n > 2 arguments). Such generalisations include the
strongly homotopy Lie algebras of Lada and Stasheff (also known as L∞-algebras)
and ‘Filippov algebras’. These structures were analysed and compared in the
papers [25]–[27] by Vinogradov and his coauthors.

It should be noted that Vinogradov’s scientific interests were always very strongly
motivated by complex and important problems of modern physics, from the dynam-
ics of sound beams [28] to the magnetohydrodynamic equations (the so-called
Kadomtsev–Pogutse equations used in the theory of stability of high-temperature
plasma in tokamaks) [29]. The mathematical understanding of the fundamental
physical concept of the observable received much attention in the book [4], written
by Vinogradov in collaboration with the participants in his seminar and published
under the pseudonym Jet Nestruev.

Whatever Vinogradov was occupied with — geometry of equations, the Schouten
and Nijenhuis brackets [22], [23], mathematical problems in gravity theory [30]–[32],
n-ary generalisations of Lie algebras [25]–[27], or structural analysis of the lat-
ter [33], [34],— all his works were distinguished by an unorthodox approach, great
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depth, and non-triviality of the results. His printed heritage consists of more than
a hundred papers and ten monographs.

His scientific activity was not limited to work in his office. For many years,
he led a research seminar at Moscow State University, consisting of two parts,
mathematics and physics. This seminar became a prominent feature in the math-
ematical life of Moscow from the 1960s to the 1980s. He brought up a galaxy
of students (in Russia, Italy, Switzerland, Poland), 19 of whom received Ph.D.
degrees, 6 received D.Sc. degrees, and one was elected a corresponding member of
the Russian Academy of Sciences. On his initiative and under his leadership sev-
eral Diffiety Schools were held in Italy, Russia, and Poland. He was the soul of the
series of chamber conferences “Current Geometry” held in Italy from 2000 to 2010,
as well as the comprehensive Moscow conference “Secondary Differential Calculus
and Cohomological Physics” (1997), with proceedings published in [15].

He was one of the initiators and an active participant in the creation of the
Erwin Schrödinger International Institute for Mathematics and Physics (ESI) in
Vienna, as well as the Journal of Differential Geometry and its Applications, where
he was a member of the editorial board until his last days. In 1985 Vinogradov
founded a laboratory for the study of various aspects of the geometry of differential
equations at the Institute of Software Systems in Pereslavl-Zalessky and was its
scientific supervisor until his departure for Italy. He also lectured to students who
were not accepted by the Faculty of Mechanics and Mathematics of Moscow State
University because of their Jewish origins (Vinogradov called this ‘the Peoples’
Friendship University’).

He was a very versatile person: he played violin, wrote poetry in Italian, played
for the faculty water polo team, and was an avid soccer player. However, the main
thing for him was certainly mathematics.

Alexander Mikhailovich Vinogradov continues to live in his works, and in the
memory of students, family, and friends.

A.M. Astashov, I.V. Astashova, A.V. Bocharov, V.M. Buchstaber,
V.A. Vassiliev, A.M. Verbovetsky, A.M. Vershik,

A.P. Veselov, M.M. Vinogradov, L. Vitagliano, R.F. Vitolo,
Th.Th. Voronov, V.G. Kac, Y. Kosmann-Schwarzbach,
I.S. Krasil’shchik, I.M. Krichever, A.P. Krishchenko,

S.K. Lando, V.V. Lychagin, M. Marvan, V.P. Maslov,
A.S. Mishchenko, S.P. Novikov, V.N. Rubtsov, A.V. Samokhin,

A.B. Sossinsky, J. Stasheff, D.B. Fuchs, A.Ya. Khelemsky,
N.G. Khor’kova, V.N. Chetverikov, and A.S. Schwarz
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