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What are third-order homogeneous

Hamiltonian operators?



First-order Dubrovin–Novikov (homogeneous) operators

Dubrovin–Novikov (homogeneous) operators were introduced in
1983 for the Hamiltonian formalism of hydrodynamic-type
equations

uit = vij(u)u
j
x = Aij

1

δH1

δuj
H1 =

∫

h(u)dx

u = (ui(t, x)), i, j = 1,. . . ,n (n-components). The operators are
of the form

Aij
1 = gij(u)∂x + bijk (u)u

k
x

Homogeneity: deg ∂x = 1.



Geometry of 1st-order Dubrovin–Novikov operators

Any change of coordinates of the type ūi = ūi(uj) will not
change the ‘nature’ of the above operator. gij transforms as a
contravariant 2-tensor; usually it is required that gij is
non-degenerate; Γj

ik = −gisb
sj
k transforms as a linear connection.

Conditions:

◮ A∗

1 = −A1 is equivalent to: symmetry of gij , ∇[Γ]g = 0;

◮ [A1, A1] = 0 is equivalent to: gij flat pseudo-Riemannian

metric and Γj
ik = Γj

ki, or Γ is the Levi-Civita connection of
g.



Third-order Dubrovin–Novikov operators

Dubrovin–Novikov operators were defined for higher orders too.
In particular

Aij
3 =gij(u)∂3x + bijk (u)u

k
x∂

2
x

+ [cijk (u)u
k
xx + cijkm(u)ukxu

m
x ]∂x

+ dijk (u)u
k
xxx + dijkm(u)ukxu

m
xx + dijkmn(u)u

k
xu

m
x u

n
x,

Examples of Hamiltonian equations of the form

uit = Aij
3

(

δH2

δuj

)

are in the 2-component case the Chaplygin gas equation
(Mokhov DrSc thesis, ’96) and the 3-component case WDVV
equation (Ferapontov, Galvao, Mokhov, Nutku CMP ’95).



Example: 2-component Chaplygin gas equation

(O. Mokhov, ’96) The Monge–Ampère equation
uttuxx − u2xt = −1 can be reduced to hydrodynamic form

at = bx, bt =

(

b2 − 1

a

)

x

,

via the change of variables a = uxx, b = uxt. It possesses the
Hamiltonian formulation

(

a
b

)

t

= ∂x







0 ∂x
1

a
1

a
∂x

b

a2
∂x + ∂x

b

a2






∂x

(

δH/δa
δH/δb

)

,

and the nonlocal Hamiltonian,

H = −

∫ (

1

2
a(∂−1

x b)2 + ∂−2
x a

)

dx.



Example: 3-component WDVV equation

The simplest associativity (WDVV) equation:

fttt = f2xxt − fxxxfxtt

can be presented by a = fxxx, b = fxxt, c = fxtt as

at = bx, bt = cx, ct = (b2 − ac)x.

From Ferapontov, Galvao, Mokhov, Nutku, CMP (1997),
there are two local Dubrovin-Novikov Hamiltonian operators,
first-order A1 and third-order A3,

A3 =





0 0 ∂3x
0 ∂3x −∂2xa∂x
∂3x −∂xa∂

2
x (∂2xb∂x + ∂xb∂

2
x + ∂xa∂xa∂x)







Some known results

Some facts which are known on non-degenerate (det(gij) 6= 0)
third-order differential geometric Hamiltonian operators
(Potemin ’86, ’97; Potemin–Balandin, ’01; Doyle ’95):

1. the coefficients (−1/3)gisb
sj
k , (−1/3)gisc

sj
k , −gisd

sj
k

transform as Christoffel symbols;

2. −gisd
sj
k is symmetric and flat;

3. the operator can be brought to a constant form g̃ij∂3x if and
only if (−1/3)gisc

sj
k has zero torsion;

4. in flat coordinates of −gisd
sj
k the operator takes the form

A3 = ∂x ◦ (g
ij∂x + cijk u

k
x) ◦ ∂x,

where gij is quadratic and cijk is linear in the flat
coordinates. Such flat coordinates are Casimirs of the
operator.



Solving the linear equations

Let us set cijk = giqgjpc
pq
k .

Proposition. Skew-adjointness of A3 and [A3, A3] = 0 are
equivalent, in Casimirs, to the fact that gij are second–order
polynomials in field variables and

cnkm =
1

3
(gnm,k − gnk,m),

gmk,n + gkn,m + gmn,k = 0,

cmnk,l = −gpqcpmlcqnk.

Corollary. The metric gmn is the Monge form of a quadratic

line complex.



What is a quadratic line complex?

A quadratic line complex is a submanifold defined by a
homogeneous quadratic equation XTQX = fij,hkp

ijphk = 0, in
the manifold L of all lines in a projective space P

n(C);
X = (pij) are Plücker’s coordinates pij = uivj − ujvi, P = (ui),
V = (vj) two distinct points.

Note that L ⊂ P
N (C) is a submanifold defined by quadratic

equations (Plücker’s embedding).

If n = 3 then quadratic line complexes are classified by the 11
Jordan forms of the matrix QΩ−1, where Ω is the matrix of the
Plücker’s quadric (C. Segre – Weiler classification; see C.M.
Jessop, A treatise on the line complex, Camb. Un. Pr. 1903).



Quadratic line complexes and Monge metrics

Replace the point V by the differentials dP = (duj). Then
pij = uiduj − ujdui (Lie coordinates). Use an affine chart:
un+1 = 1, dun+1 = 0. Then we have a Monge metric

gij = (dui)TQ0(du
i) + (dui)TQ1(u

iduj − ujdui)+

(uiduj − ujdui)TQ2(u
iduj − ujdui), (2)

Q0, Q1, Q2 constant matrices.

The surface det(g) = 0 is the so-called singular surface of the
complex. For n = 2 it is a conic, for n = 3 it is a Kummer
quartic, for n = 4 it is a B. Segre sextic.



Quadratic line complexes and Monge metrics

Example: n = 3

g11 = −[R12(u
2
)
2
+ R13(u

3
)
2
+ 2B12u

2
u
3
+ 2H12u

2
+ 2H13u

3
+ D1],

g22 = −[R12(u
1
)
2
+ R23(u

3
)
2
+ 2B22u

1
u
3
+ 2H21u

1
+ 2H23u

3
+ D2],

g33 = −[R23(u
2
)
2
+ R13(u

1
)
2
+ 2B32u

1
u
2
+ 2H31u

1
+ 2H32u

2
+ D3],

g12 = R12u
1
u
2
+ B12u

1
u
3
+ B22u

2
u
3
− B32(u

3
)
2
+ H12u

1
+ H21u

2
+ (E2 − E1)u

3
+ F12,

g13 = R13u
1
u
3
+ B12u

1
u
2
− B22(u

2
)
2
+ B32u

2
u
3
+ H13u

1
+ H31u

3
+ (E1 − E3)u

2
+ F13,

g23 = R23u
2
u
3
− B12(u

1
)
2
+ B22u

1
u
2
+ B32u

1
u
3
+ H23u

2
+ H32u

3
+ (E3 − E2)u

1
+ F23,



Monge–Ampère example revisited

The operator:

A3 = ∂x







0 ∂x
1

a
1

a
∂x

b

a2
∂x + ∂x

b

a2






∂x

is completely determined by its Monge metric:

gij =

(

−2b a
a 0

)

In this case, the singular surface is det(g) = −a2, and is a line
counted two times. Moreover, g is a flat pseudo-Riemannian
metric. This is the simplest nontrivial homogeneous third-order
operator.



WDVV example revisited

The operator:

A3 =





0 0 ∂3x
0 ∂3x −∂2xa∂x
∂3x −∂xa∂

2
x (∂2xb∂x + ∂xb∂

2
x + ∂xa∂xa∂x)





The operator is completely determined by its metric:

gij =





−2b a 1
a 1 0
1 0 0





In this case, the singular surface is det(g) = −1, and is a
quadruple plane at infinity. Moreover, g is a flat
pseudo-Riemannian metric.



Two components case: affine classification

(The 1-component case was described by Gel’fand-Dorfman –
point-equivalent to ∂3x).

Theorem: only two non-trivial metrics in 2-component case:

g
(1)
ik =

(

1− (b2)2 1 + b1b2

1 + b1b2 1− (b1)2

)

, g
(2)
ik =

(

−2b2 b1

b1 0

)

g(1) is non-flat, g(2) is flat and appears in the Chaplygin gas
equation (O. Mokhov’s Doctoral Thesis).
Theorem. In the 2-component cases the operators may be
reduced to ∂3x by the above reciprocal transformations.



Projective invariance

It is known that Monge metrics transform, under projective
transformations ũi = T i(uj) = (Ai

ju
j +Ai

0)/∆, with

∆ = ciu
i + c0, as

g̃ij =
gij |ui=T i(ũj)

∆4
.

Theorem. Reciprocal transformations of the type

dx̃ = ∆dx, ũi = T i(uj) = (Ai
ju

j +Ai
0)/∆

preserve the canonical form of third-order homogeneous
operators and effect a projective transformation on the Monge
metric gij . The projective group is maximal.



Projective normal forms for n = 3

g(1) =

(

(u2)2 + c −u1u2
− u3 2u2

−u1u2
− u3 (u1)2 + c(u3)2 −cu2u3

− u1

2u2
−cu2u3

− u1 c(u2)2 + 1

)

,

g(2) =

(

(u2)2 + 1 −u1u2
− u3 2u2

−u1u2
− u3 (u1)2 −u1

2u2
−u1 1

)

,

g(3) =

(

(u2)2 + 1 −u1u2 0
−u1u2 (u1)2 0

0 0 1

)

,

g(4) =

(

−2u2 u1 0
u1 0 0
0 0 1

)

, g(5) =

(

−2u2 u1 1
u1 1 0
1 0 0

)

, g(6) =

(

1 0 0
0 1 0
0 0 1

)

.



How to find them? Application to:

◮ hydrodynamic-type systems in

conservative form;

◮ WDVV equations.



Suitable coordinate systems

It is clear that Casimirs of A3 are good:

A3 = ∂x ◦ (g
ij∂x + cijk u

k
x) ◦ ∂x,

Casimirs are conservation law densities, so it is natural to look
for operators A3 for hydrodynamic-type systems in conservative
form:

ait = (V i(a))x

In potential coordinates ai = bix

bit = V i(bx), A3 = −gij(bx)∂x − cijk (bx)b
k
xx,



A necessary condition

For a system of PDEs F = uit − f i(t, x, uj , ujx, u
j
xx, . . .) = 0 we

have that

uit = Aij
3

(

δH

δuj

)

with A∗

3 = −A3 and [A3, A3] = 0

⇒ ℓF ◦A3 = A∗

3 ◦ ℓ
∗

F

The right-hand side as a necessary condition to
Hamiltonianity (Kersten, Krasil’shchik, Verbovetsky, JGP ’04).



How to implement the necessary condition

The operator equation to be fulfilled by Hamiltonian operators
can be reformulated as follows. Extend the equation by

{

F = uit − f(t, x, ui, uix, u
i
xx, . . .) = 0

(ℓF )
∗(p) = 0,

cotangent covering or adjoint system. Then the condition is

ℓ̃F (A3(p)) = 0



Necessary condition in suitable coordinates

Theorem. The Hamiltonianity of a hydrodynamic-type system
in conservative form with respect to A3:

uit = Aij
3

(

δH

δuj

)

with A∗

3 = −A3 and [A3, A3] = 0

is equivalent to the following conditions on the Monge metric g:

gim
∂V m

∂aj
= gjm

∂V m

∂ai
, cmkj

∂V m

∂ai
+ cmik

∂V m

∂aj
+ cmji

∂V m

∂ak
= 0.



A general example

In N component case we have

gij =













2a2 −a1 0 1
−a1 0 1
0 1

1 0
1 0 0













and the Hamiltonian is

H = −
1

2
a1(D−1a2)2 +

1

2

N
∑

m=2

(D−1am)(D−1aN+2−m).

implies the hydrodynamic type systems

a1t = a2x, a2t = a3x, ..., aN−1
t = aNx , aNt = [a1a3 − (a2)2]x.



Main example: WDVV in N = 3

The associativity equation (ηij an N ×N constant
nondegenerate matrix):

ηµλ
∂3F

∂tλ∂tα∂tβ
∂3F

∂tν∂tµ∂tγ
= ηµλ

∂3F

∂tν∂tα∂tµ
∂3F

∂tλ∂tβ∂tγ

If N = 3 we have a single equation. Let us introduce
coordinates

a = fxxx, b = fxxt, c = fxtt.

Then the compatibility conditions for the WDVV equation
become

at = bx, bt = cx, ct = (ϕ(a, b, c; η))x



The WDVV Monge metric

By using the compatibility conditions we have:

Theorem. The previous hydrodynamic-type system for generic
values of η has a third-order Hamiltonian operator for which
Casimirs are the letters a, b, c. The Monge metric of the third
order operator is, up to a reciprocal transformation of
projective type, the metric

g(3) =





b2 + 1 −ab 0
−ab a2 0
0 0 1







Particular cases

The first example (Ferapontov et al., CMP 1995)

η =





0 0 1
0 1 0
1 0 0



 type g(5):





−2b a 1
a 1 0
1 0 0





The second example (Kalayci, Nutku PLA 1997)

η =





0 0 1
0 1 1
1 1 1



 type g(4):





−2(b+ c) a− b− 2c a+ b+ 1
a− b− 2c 2a− 2c+ 1 a+ b+ 1
a+ b+ 1 a+ b+ 1 0







Particular cases

O. Mokhov, O. Pavlenko, 2012, considered the following choice
of η:

η =





0 α 1
α β 0
1 0 0





and found first-order homogeneous Hamiltonian operators. Here
is the third order operator of type g(4):





2(αc− b) a− 2α2c+ αb −aα+ α2b+ β2

a− 2α2c+ αb −2aα+ 2α3c+ β2 α(aα− α2b− β2)
−aα+ α2b+ β2 α(aα− α2b− β2) 0







Particular cases

Here the metric is of type g(3) (the most generic)

η =





1 0 0
0 1 0
0 0 1





fttt =
f2xxt − fxxxfxtt + f2xtt − 1

fxxt











at = bx,
bt = cx,

ct =
(

−ac+b2+c2−1
b

)

x

gij =





b2 + 1 −ab+ bc −b2

−ab+ bc a2 − 2ac+ c2 + 1 ab− bc
−b2 ab− bc b2







Particular cases

Here the metric is of type g(4)

η =





1 0 0
0 0 1
0 1 0





fttt =
fxxtfxtt + 1

fxxx







at = bx,
bt = cx,

ct =
(

bc+1
a

)

x

gij =





c2 −1 −ac
−1 0 0
−ac 0 a2







An example in the case N = 4

η =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









WDVV equations are a system:

− 2fxyz − fxyyfxxy + fyyyfxxx = 0,

− fxzz − fxyyfxxz + fyyzfxxx = 0,

− 2fxyzfxxz + fxzzfxxy + fyzzfxxx = 0,

fzzz − (fxyz)
2 + fxzzfxyy − fyyzfxxz + fyzzfxxy = 0,

fyyyfxzz − 2fyyzfxyz + fyzzfxyy = 0.



6-components WDVV system

We introduce new field variables ak:

a1 = fxxx, a
2 = fxxy, a

3 = fxxz, a
4 = fxyy, a

5 = fxyz, a
6 = fxzz.

The compatibility conditions for this system can be written as a
pair of hydrodynamic type systems in conservative form:

aiy = (vi(a))x, aiz = (wi(a))x,

where

v1 = a2, w1 = a3, v2 = a4, v3 = w2 = a5, w3 = a6,

v4 = fyyy =
2a5 + a2a4

a1
, v5 = w4 = fyyz =

a3a4 + a6

a1
,

v6 = w5 = fyzz =
2a3a5 − a2a6

a1
,

w6 = fzzz = (a5)2 − a4a6 +
(a3)2a4 + a3a6 − 2a2a3a5 + (a2)2a6

a1
.



Monge metric for 6-components WDVV

gik(a) =

















(a4)2 −2a5 2a4 −(a1a4 + a3) a2 1
−2a5 −2a3 a2 0 a1 0
2a4 a2 2 −a1 0 0

−(a1a4 + a3) 0 −a1 (a1)2 0 0
a2 a1 0 0 0 0
1 0 0 0 0 0

















More information on the 6-component WDVV like: nonlocal
Hamiltonians, momentum, factorization of the operator can be
found in: MV Pavlov, RF Vitolo, arxiv::1409.7647



Factorization of the IIIrd order operator

Theorem: The Hamiltonian operator A3 can be rewritten in
the simplified form

Aij
2 = ϕβγ∂xψ

i
β∂xψ

j
γ∂x,

where

ψi
γ =

1

a1

















a1 0 0 a4 a5 a3a4 − a2a5

0 0 0 0 −1 a2

0 0 0 −1 0 −a3

0 a1 0 0 a3 a1a5 − a2a3

0 0 0 0 0 −a1

0 0 a1 0 −a2 (a2)2 − a1a4

















,

ϕβγ =

















0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 2 0 0 −1
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 −1 0 0 1

















.



Perspectives on IIIrd order HO

1. Classification in higher number of components.

2. The nonlocal version of this talk! Analogue of Ferapontov’s
curvature condition for first-order operators.

3. Classification of compatible pairs of operators: first-order
and third-order. Preliminary results in n = 2.

4. Conjecture: pairs of a first-order and a third-order
homogeneous HO define a Frobenius manifold.



Perspectives on conservative systems

1. Compatibility conditions for nonlocal operators.

2. Classification of conservative hydrodynamic-type systems
that admit third-order operators.

3. Classification of other systems in Casimirs admitting
third-order operators.

4. Classification of integrable systems admitting compatible
pairs of one third-order operator and another operator (of
the first, second, third order . . . ) as Hamiltonian operators.



Perspectives on WDVV

1. Conjecture: all WDVV are the same bi-Hamiltonian
system up to a coordinate change.

2. Conjecture: correspondence between Frobenius manifolds
and pairs of first-order, third order homogeneous HO;
another relation between Frobenius manifolds and WDVV?

3. The identity operator g(6) does not appear in the WDVV
systems? Other metrics g(1), g(2)?

4. Why a quadratic line complex is attached to each WDVV
system? I can’t believe that it is there by chance. Relation
with Gromov–Witten invariants?



Symbolic computations

Within the REDUCE CAS (now free software) we use the
packages CDIFF and CDE, freely available at
http://gdeq.org.

CDIFF was developed by the Twente group (Gragert, Kersten,
Post, Roelofs); it generates total derivatives on a supermanifold.

CDE (by R. Vitolo) can compute (in the forthcoming version
2.0): Fréchet derivatives, formal adjoints, symmetries and
conservation laws, Hamiltonian operators, their brackets, their
Lie derivatives.

Cooperation with AC Norman (Trinity College, Cambridge) to
improvements and documentation of REDUCE’s kernel.



The end!

THANK YOU!


