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What are third-order homogeneous
Hamiltonian operators?



First-order Dubrovin—Novikov (homogeneous) operators

Dubrovin—Novikov (homogeneous) operators were introduced in
1983 for the Hamiltonian formalism of hydrodynamic-type

equations
uj = vi(w)ud = AY 5 — M :/h(u)dx
u = (u'(t,z)), i,j = 1,...,n (n-components). The operators are

of the form - - -
AV = g ()8, + b (w)uk
Homogeneity: degd, = 1.



Geometry of 1st-order Dubrovin—Novikov operators

Any change of coordinates of the type u' = u‘(u’/) will not
change the ‘nature’ of the above operator. ¢* transforms as a
contravariant 2-tensor; usually it is required that g" is
non-degenerate; I’gk = —gisbij transforms as a linear connection.

Conditions:
» A} = —A; is equivalent to: symmetry of ¢, V[['|g = 0;
» [A1, Ai] = 0 is equivalent to: g;; flat pseudo-Riemannian
metric and F]k =TI, ;» or I' is the Levi-Civita connection of
g.



Third-order Dubrovin—Novikov operators

Dubrovin—Novikov operators were defined for higher orders too.
In particular

A =g (u)d? —l—sz(u)uiﬁg
+ [ (w)uk, + o, (Wyubulo,
+d (Wb, + df (uba + d (a)ubul,

Examples of Hamiltonian equations of the form

Az] 57'[2
Sul
are in the 2-component case the Chaplygin gas equation

(Mokhov DrSc thesis, ’96) and the 3-component case WDVV
equation (Ferapontov, Galvao, Mokhov, Nutku CMP ’95).



Example: 2-component Chaplygin gas equation

(O. MokHOV, '96) The Monge—-Ampere equation
UptUgy — uit = —1 can be reduced to hydrodynamic form

21
at:bx7 bt:<ba ) )

via the change of variables a = uz., b = ugt. It possesses the
Hamiltonian formulation

1
a 0 0y~ 0H /da
) =% | 1 b Yob | % SH/5b )
t 76:1: 72814_89372
a a a

and the nonlocal Hamiltonian,

H= _/ (;a(ﬁxlb)2 - 8x2a> dz.



Example: 3-component WDVV equation

The simplest associativity (WDVV) equation:

fttt = f:?:pt - f:c:cxf:ctt
can be presented by a = frze, b = foxt, ¢ = forr as
at =bg, bp=cy, = (62 —ac)y.

From FERAPONTOV, GALVAO, MOKHOV, NUTKU, CMP (1997),
there are two local Dubrovin-Novikov Hamiltonian operators,
first-order A; and third-order As,

0 0 o3
As=10 o3 —02a0,
P —0,a0% (9200, 4 0,602 + 9,a0,ad;)



Some known results

Some facts which are known on non-degenerate (det(g%) # 0)
third-order differential geometric Hamiltonian operators
(Potemin '86, '97; Potemin—Balandin, '01; Doyle '95):
1. the coefficients (—1/3)gish;’, (—1/3)gisc’, —gisd}’
transform as Christoffel symbols;
2. —gisdzj is symmetric and flat;
3. the operator can be brought to a constant form G402 if and
only if (—1/3)gisc;’ has zero torsion;

4. in flat coordinates of —gisdij the operator takes the form
A3:axo( J@ —|—CU k) 83;,

where g;; is quadratic and ¢;;i, is linear in the flat
coordinates. Such flat coordinates are Casimirs of the
operator.



Solving the linear equations

Let us set ¢, = giqgjpczq.

Proposition. Skew-adjointness of A3 and [As, A3] = 0 are
equivalent, in Casimirs, to the fact that g;; are second-order
polynomials in field variables and

Cnkm = g(gnm,k - gnk,m)a

Imk,n + 9kn,m + Imnk = 07
Cmnk,l = _gpqcpmlcan’-

Corollary. The metric ¢, is the Monge form of a quadratic
line complex.



What is a quadratic line complex?

A quadratic line complex is a submanifold defined by a
homogeneous quadratic equation X7 QX = fij’hkpij p"* =0, in
the manifold L of all lines in a projective space P™(C);

X = (pY) are Pliicker’s coordinates p* = u'v/ — uiv?, P = (u?),
V = (v7) two distinct points.

Note that L C P¥(C) is a submanifold defined by quadratic
equations (Pliicker’s embedding).

If n = 3 then quadratic line complexes are classified by the 11
Jordan forms of the matrix QQ !, where € is the matrix of the
Pliicker’s quadric (C. Segre — Weiler classification; see C.M.
Jessop, A treatise on the line complex, Camb. Un. Pr. 1903).



Quadratic line complexes and Monge metrics

Replace the point V by the differentials dP = (du’). Then
pY = u'dw! —uw/du’ (Lie coordinates). Use an affine chart:
u™ !t =1, du™*!' = 0. Then we have a Monge metric

9ij = (du")" Qo(du") + (du")" Q1 (u'dw! — v du’)+
(u'du? — v du’)T Qo (u'du? — v/ dut), (2)
Qo, Q1, Q2 constant matrices.

The surface det(g) = 0 is the so-called singular surface of the
complex. For n = 2 it is a conic, for n = 3 it is a Kummer
quartic, for n = 4 it is a B. Segre sextic.



Quadratic line complexes and Monge metrics

Example: n =3

g11 = —[R12(v?)? + Ri3(u®)? + 2B1au?u® + 2H19u? 4+ 2H3u® + Dy},
922 = —[R12(u")? + Raa(u®)® + 2Bapu’u® + 2Ha1u' + 2Ha3u® + Dy,
933 = —[R23(u*)® + R13(u")? + 2B3zu'u® + 2H31u' + 2H32u” + D3],

g12 = Rizu'u® + Brou'u® + Baou®u® — By (u®)? + Higu' + Ha1u? + (B2 — E1)u® + Fia,
913 = Rizu'u® + Biou'u® — Baa(u?)? + Baau®u® + Hizu' + Hziu® + (By — E3)u® + Fus,

923 = Rozu’u® — B1a(u')? + Baou'u® + Baau'u® + Hagu® + Haou® + (B3 — Ea)u' + Fas,



Monge—Ampere example revisited

The operator:

1
a_o |’ O P
5= [ 1 b | O
0, —0,+ 0,
a a a

is completely determined by its Monge metric:

—2b «a
gij = a 0

In this case, the singular surface is det(g) = —a?, and is a line
counted two times. Moreover, g is a flat pseudo-Riemannian
metric. This is the simplest nontrivial homogeneous third-order
operator.



WDVYV example revisited

The operator:

0 0 3
As=[0 & —02a0,
03 —0,a02 (0260, + 0,502 + Dpadyadsy)

The operator is completely determined by its metric:

—2b a 1
gij = a 10
1 00
In this case, the singular surface is det(g) = —1, and is a

quadruple plane at infinity. Moreover, g is a flat
pseudo-Riemannian metric.



Two components case: affine classification

(The 1-component case was described by Gel’fand-Dorfman —
point-equivalent to 93).

Theorem: only two non-trivial metrics in 2-component case:
@ [ 1—=(0*? 1+b? @ [ -2 b
9k =\ 1 Y 1 ()2 ) ik = pl 0
g is non-flat, ¢(® is flat and appears in the Chaplygin gas
equation (O. Mokhov’s Doctoral Thesis).

Theorem. In the 2-component cases the operators may be
reduced to 92 by the above reciprocal transformations.



Projective invariance

It is known that Monge metrics transform, under projective
transformations @' = T%(u’) = (Aé-uj + A§)/A, with
A = cu’ + co, as
_ Gijlwi=rian
9ij = A
Theorem. Reciprocal transformations of the type

di = Adz, @ =T' () = (Ah/ + AD)/A

preserve the canonical form of third-order homogeneous
operators and effect a projective transformation on the Monge
metric g;;. The projective group is maximal.



Projective normal forms for n = 3

2u? —culud —ut

(W +¢ —utu? — b
g(l) — | —utu? — B (u1)2 JrC(u3)2

w?)?+1  —u'u®—u
9(2) — | —ytu 3 (u1)2

2u? —u!

3

2>
—cu?u® —ut ,
c(u®)? +1

202
_ul s

(u?)? +1 u1u2 0
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1

0
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How to find them? Application to:
» hydrodynamic-type systems in
conservative form;
» WDVYV equations.



Suitable coordinate systems

It is clear that Casimirs of Ag are good:
Agzaxo( ”8 +Cl] k) (91,

Casimirs are conservation law densities, so it is natural to look
for operators As for hydrodynamic-type systems in conservative
form:

= (Vi(a))m

In potential coordinates a’ = b,

bi = Vi(bx)v Az = _gij(bx)aw (b )bk

TT?



A necessary condition

For a system of PDEs F = u} — fi(t,m,uj,ugc,u%;p, ...)=0we
have that

ui = AY (gg) with A5 =—A3 and [As, A3]=0

= [ApoAsg= A0l

The right-hand side as a necessary condition to
Hamiltonianity (Kersten, Krasil’shchik, Verbovetsky, JGP '04).



How to implement the necessary condition

The operator equation to be fulfilled by Hamiltonian operators
can be reformulated as follows. Extend the equation by

{ F=ul— f(t,z,u’,ui,ul,,...)=0

cotangent covering or adjoint system. Then the condition is

lp(As(p)) =0



Necessary condition in suitable coordinates

Theorem. The Hamiltonianity of a hydrodynamic-type system
in conservative form with respect to As:

u% = Aéj <5uﬂ> with A§ = —A3 and [Ag,Ag] =0

is equivalent to the following conditions on the Monge metric g:

ovm vt Qv ovm v
Gim oaJ = Gjm 9a’ ’ mkj dat mik oaJ mji 80/“ = V.



A general example

In N component case we have

—a' 0 1
9ij = 0 1
1 0
1 00
and the Hamiltonian is
1 1Y
1 2 —1, N+2-m
H=—7a +52 (D a ).

m=2
implies the hydrodynamic type systems

1 2 2 3 - ai\f 1 —CLN N [ 1.3 ((12)2];1:-



Main example: WDVV in N =3

The associativity equation (7;; an N x N constant
nondegenerate matrix):

o O°F FPF N OF &FF

oot ot orrotrorT T oot ot oot oty

If N =3 we have a single equation. Let us introduce
coordinates
a:fxa:a:a b:fazxty C:fxtt-
Then the compatibility conditions for the WDVV equation
become
ar = by, by =cg00 = (gp(a, b, C;ﬁ))m



The WDVV Monge metric

By using the compatibility conditions we have:

Theorem. The previous hydrodynamic-type system for generic
values of 1 has a third-order Hamiltonian operator for which
Casimirs are the letters a, b, c. The Monge metric of the third
order operator is, up to a reciprocal transformation of
projective type, the metric

¥+1 —ab
g = —ab o
0

0
0
0 1



Particular cases

The first example (Ferapontov et al., CMP 1995)
0 01 —2b a 1
n=10 1 0 type g(5): a 1 0
1 00 1 0 0

The second example (Kalayci, Nutku PLA 1997)

0 1 —2(b+c¢) a—b—2c a+b+1
11 typeg(4): a—b—2c 2a—2c+1 a+b+1
1 1 a+b+1 a+b+1 0

3
Il
= o O



Particular cases

O. Mokhov, O. Pavlenko, 2012, considered the following choice
of n:

0 o1
n=|la B 0
1 0 0

and found first-order homogeneous Hamiltonian operators. Here
is the third order operator of type ¢(¥:

2(ac —b) a—2a’c+ ab —aa + a?b + 32
a—2a%c+ab  —2aa+2a3c+ % alaa — a?b— 5?)
—aa+a?b+ B2 alaa — a?b— B?) 0



Particular cases

Here the metric is of type ¢(® (the most generic)

1 00
n=[0 10
0 0 1
at:bxa
fttt: gxt_fxwxfztt"i_fy?tt_l bt:C:m
fxxt Cr = (M)
t — b "
b2 +1 —ab + be —b?
gij = | —ab+bc a2 —2ac+c2+1 ab—be

—v? ab — be b2



Particular cases

Here the metric is of type g*

1 00
n=10 0 1
010
a: = by,
_ fxxtfxtt +1 bt_ *
Jae = —F7—— t = Cz,
fa;a::c cr = (bci—l—l)
a x
2 -1 —ac
9ij = -1 0 0

—ac 0 a



An example in the case N =4

= o o O
O = O O
O O = O
o O O

WDVYV equations are a system:

= 2fayz = JaoyySoay + fyyySoaa =0,

= fazz = fayy ooz + fyyzfooe =0,

= 2fayzfaez + Jozefaay + fyzefrae =0,

Frovs = (fays)? + fozaFoyy — Fyyafonz + Fyzofaoy = 0,
fyyyfxzz - 2fyyzfacyz + fyzzfacyy =0.



6-components WDVYV system
We introduce new field variables a*:
at = fxx:caa2 = fmxy7a3 = f:caczva4 = fzyy7a5 = fzyz;aﬁ = frzz-

The compatibility conditions for this system can be written as a
pair of hydrodynamic type systems in conservative form:

where
1 2 1 3 2 4 3 2
vo=a", w =a, vVV=a, v=w=ad, w=a,
4 2a° + a%a* 5 4 a®a + a®
VY= fyyy = al y V=W = fyys = al )
6 5 2a3a® — a2a®
v = w = fyzz = ) R




Monge metric for 6-components WDVV

(a*)? —2a® 2a* —(ala*+a®) a® 1

—2a’ —2a%  a? 0 a0

2a* a? 2 —al 0 0

gik(a) = —(ata*+a®) 0 —a! (a')? 0 0
a? al 0 0 0 0

1 0 0 0 0 0

More information on the 6-component WDV'V like: nonlocal
Hamiltonians, momentum, factorization of the operator can be
found in: MV Pavlov, RF Vitolo, arxiv::1409.7647



Factorization of the IIIrd order operator

Theorem: The Hamiltonian operator As can be rewritten in
the simplified form

A = 0,050, 0x,

where
at 0 0 a’ a® a®a* — d?a’®
o 0 o0 o0 -1 a?
;, _1]o0o o 0 -1 0 —a®
Yy = adlo & o0 0 a®  ata® —a%a® |
0 0 0 O 0 —a'
0 0 o 0 —a® (a2 Lgt
0O 0 0 0 -1 0
0 0 0 -1 0 o0
v 0o 0 2 0 0 -1
 =1lo -1 0 0 0 0
-1 0 0 0 0 ©
0 0 -1 0 0 1



Perspectives on IIIrd order HO

1. Classification in higher number of components.

2. The nonlocal version of this talk! Analogue of Ferapontov’s
curvature condition for first-order operators.

3. Classification of compatible pairs of operators: first-order
and third-order. Preliminary results in n = 2.

4. Conjecture: pairs of a first-order and a third-order
homogeneous HO define a Frobenius manifold.



Perspectives on conservative systems

1. Compatibility conditions for nonlocal operators.

2. Classification of conservative hydrodynamic-type systems
that admit third-order operators.

3. Classification of other systems in Casimirs admitting
third-order operators.

4. Classification of integrable systems admitting compatible

pairs of one third-order operator and another operator (of
the first, second, third order ...) as Hamiltonian operators.



Perspectives on WDVV

1. Conjecture: all WDVV are the same bi-Hamiltonian
system up to a coordinate change.

2. Conjecture: correspondence between Frobenius manifolds
and pairs of first-order, third order homogeneous HO;
another relation between Frobenius manifolds and WDVV?

3. The identity operator g(6) does not appear in the WDVV
systems? Other metrics g™V, ¢(2)?

4. Why a quadratic line complex is attached to each WDVV
system? I can’t believe that it is there by chance. Relation
with Gromov—Witten invariants?



Symbolic computations

Within the REDUCE CAS (now free software) we use the
packages CDIFF and CDE, freely available at
http://gdeq.org.

CDIFF was developed by the Twente group (Gragert, Kersten,
Post, Roelofs); it generates total derivatives on a supermanifold.

CDE (by R. Vitolo) can compute (in the forthcoming version
2.0): Fréchet derivatives, formal adjoints, symmetries and
conservation laws, Hamiltonian operators, their brackets, their
Lie derivatives.

Cooperation with AC Norman (Trinity College, Cambridge) to
improvements and documentation of REDUCE’s kernel.



THANK YOU!

«O0>» «F>» «=» «E» = Q>



