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History

CDIFF has been developed at the University of Twente by

P. Gragert, P. Kersten, G. Post, M. Roelofs

in the end of ’80 - beginning of ’90.

REDUCE 3.8 is now free software, hosted at

http://reduce-algebra.sourceforge.net

and CDIFF is included in the official distribution.
The name CDIFF was given to the package only recently.

http://reduce-algebra.sourceforge.net


Structure

CDIFF is based upon two packages, a set of tools and an
interface:

◮ supervf.red: build vectorfields on supermanifolds; used
for building total derivatives on DEs and their tangent and
cotangent coverings.

◮ integrator.red: integrates overdetermined systems of
DEs.

◮ tools21.red: various tools.

◮ prova.red: automatic generation of jet coordinates and
prolonged equations, plus equation solver (experimental).



Documentation

In the CDIFF folder of the official distribution there is a
documentation file (by R.V.) which describes

◮ installation of REDUCE;

◮ work with CDIFF;

◮ examples of computations with CDIFF: conservation laws,
higher or generalized symmetries, Hamiltonian operators.

Example programs are included as well.



Example: Hamiltonian operators for KdV

KdV: ut = uxxx + uux.
After [KKV], we have to solve ℓ̄KdV (ϕ) = 0, or

D̄t(ϕ)− u ∗ D̄x(ϕ)− ux ∗ ϕ− D̄xxx(ϕ) = 0

over the system
{

ut = uxxx + uux
pt = pxxx + upx

D̄t, D̄x are total derivatives on the ℓ∗-covering, hence

D̄t =
∂

∂t
+ uiσt

∂

∂uiσ
+ pjµt

∂

∂pjµ



Choice of coordinates

Note that in D̄t = ∂/∂t+ uiσt∂/∂u
i
σ + pjµt∂/∂p

j
µ the sum is

extended to all indexes (i, σ) and (j, µ) of internal (or
parametric) coordinates of the ℓ∗-covering. We recall that
these are coordinates on the equation manifold F (xλ, uiσ) = 0.

When the equation is expressed as ukτ = G(xλ, ujµ) we have a
splitting of coordinates into external (or principal) and
internal (or parametric).

We will need to prolong our equations; a way to avoid the
occurrence of new conditions is that the equations be in
passive orthonomic form [M].



Define the total derivatives

Begin a CDIFF program with the statement

super_vectorfield(ddx,{x,t,u,u1,u2,u3,u4,u5,u6,u7,

u8,u9,u10,u11,u12,u13,u14,u15,u16,u17},

{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,

ext 9,ext 10,ext11,ext 12,ext 13,ext 14,ext 15,ext 16});

and analogously for each independent variable.

ddx(0,1):=1$

ddx(0,2):=0$

ddx(0,3):=u1$

ddx(0,4):=u2$

where u1 = ux, u2 = uxx, . . .



Note that in the definition of D̄t we have

super_vectorfield(ddt,{x,t,u,u1,u2,u3,u4,u5,u6,u7,

u8,u9,u10,u11,u12,u13,u14,u15,u16,u17},

{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,

ext 9,ext 10,ext11,ext 12,ext 13,ext 14,ext 15,ext 16});

where

ddt(0,1):=0$

ddt(0,2):=1$

ddt(0,3):=ut$

ddt(0,4):=ut1$

where ut = ut, ut1 = utx, . . . so that coefficients are principal.



For scalar evolutionary equations with two independent
variables internal variables are of the type (t, x, u, ux, uxx, . . .).
So we shall restrict total derivatives using

ut:=u*u1+u3;

ut1:=ddx ut;

ut2:=ddx ut1;

ut3:=ddx ut2;



Odd (ℓ∗-covering) variables

D̄x and D̄t contain odd variables, introduced as follows:

ddx(1,1):=0$

ddx(1,2):=0$

ddx(1,3):=ext 4$

ddx(1,4):=ext 5$

the first index ‘1’ says that we are dealing with odd variables,
ext indicates anticommuting variables. Here, ext 3 is p0, ext
4 is px, ext 5 is pxx, . . . so ddx(1,3):=ext 4 indicates px∂/∂p,
etc.. We replace pt by ext 6 + u*ext 4:

ddt(1,1):=0$

ddt(1,2):=0$

ddt(1,3):=ext 6 + u*ext 4$

ddt(1,4):=ddx(ddt(1,3))$

ddt(1,5):=ddx(ddt(1,4))$



Coverings of passive orthonomic DEs

In case of an evolutionary equation, the ℓ∗-covering is
evolutionary.

Computational question: is the ℓ∗-covering of an equation in
passive orthonomic form still in passive orthonomic form?



Gradings

In DEs with scale symmetries variables are graded:

graadlijst:={{u},{u1},{u2},{u3},{u4},{u5},

{u6},{u7},{u8},{u9},{u10},{u11},{u12},{u13},{u14}};

This is the list of all monomials of degree 0, 1, 2, . . . which can
be constructed from the above list of elementary variables with
their grading.

grd0:={1};

grd1:= mkvarlist1(1,1)$

grd2:= mkvarlist1(2,2)$

grd3:= mkvarlist1(3,3)$

grd4:= mkvarlist1(4,4)$



Ansatz for Hamiltonian operators

We want to solve the equation

ddt(phi)-u*ddx(phi)-u1*phi-ddx(ddx(ddx(phi)))=0

and we make the following ansatz:

phi:=

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 5+

(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 5+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 6



Define the equation

After having set

equ 1:=ddt(phi)-u*ddx(phi)-u1*phi-ddx(ddx(ddx(phi)));

vars:={x,t,u,u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,u12};

tel:=1;

we initialize the equations:

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});

and we plug the ansatz for phi and due to the polinomiality
and the graded structure we obtain a long list of equations
on the coefficients of all graded monomials which multiply each
single variable pσ.
We solve the equations using es, the equation solver from
integrator.red package.

for i:=2:tel do es i;



Solution of the equation

The results are the two well-known Hamiltonian operators for
the KdV:

phi := c(4)*ext(4) + 3*c(3)*ext(6) +

2*c(3)*ext(4)*u + c(3)*ext(3)*u1$

Of course, the results correspond to the operators

ext(4) →

Dx,

3*c(3)*ext(6) + 2*c(3)*ext(4)*u + c(3)*ext(3)*u1 →

3Dxxx + 2uDx + ux

Note that each operator is multiplied by one arbitrary real
constant, c(4) and c(3).



Other solved problems

◮ Higher symmetries;

◮ Local conservation laws;

◮ Non-local Hamiltonian operators (KdV);

◮ Hamiltonian operators for systems of DEs (Boussinesq
equation).

P. Kersten did more computations for Monge-Ampère DEs
(2D-associativity eq., or WDVV eq.), but these are not included
as examples of CDIFF distribution.



Automatic interface (experimental)

The interface prova.red has been recently developed by R.V..
It needs initial data like: independent variables, dependent
variables, the differential equation, principal and parametric
coordinates.
Coordinates are generated automatically in the form

u_xnynzn

e.g. we have u x2y0z1 → uxxz.



Structure of the interface

We first generate all coordinates and total derivatives, then
compute prolongations of the equation, then restrict total
derivatives to the equation manifold.
Then, we compute gradings of all internal coordinates.
We proceed by writing the equation and an ansatz for it.
We have been able to reproduce previous ‘handcrafted’
computations.
Range of applicability: potentially for each DE which is
written in passive orthonomic form we can compute higher
symmetries, conservation laws, local and nonlocal hamiltonian
operators.
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