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Università del Salento, and
Istituto Nazionale di Fisica Nucleare

J.S. Krasil’shchik’s Seminar
Independent University of Moscow, Russia

19 October 2022



Hamiltonian PDEs

An evolutionary system of PDEs

F = uit − f i(t, x, uj , ujx, ujxx, . . .) = 0

admits a Hamiltonian formulation if there exist A, H =
∫
h dx

such that

uit = Aij
(
δH
δuj

)
where A = (Aij) is a Hamiltonian operator, i.e. a matrix of
differential operators Aij = Aijσ∂σ, where ∂σ = ∂x ◦ · · · ◦ ∂x
(total x-derivatives σ times), such that

{F,G}A =

∫
δF

δui
Aijσ∂σ

δG

δuj
dx

is a Poisson bracket (skew-symmetric and Jacobi).



First-order homogeneous operators

First-order homogeneous operators were introduced in 1983 by
Dubrovin and Novikov for the Hamiltonian formalism of
quasilinear first-order equations

uit = vij(u)ujx = Aij1
δH1

δuj
H1 =

∫
h(u)dx

u = (ui(t, x)), i, j = 1,. . . ,n (n-components). The operators are
of the form

Aij1 = gij(u)∂x + bijk (u)ukx

Homogeneity: deg ∂x = 1.

Canonical form: Aij1 = ηij∂x.



Higher-order homogeneous operators

Higher order homogeneous operators were introduced in 1984
by Dubrovin and Novikov. In particular, the cases under
consideration here are the second-order and third-order
homogeneous operators:

Aij2 =gij2 (u)∂2x + bij2 k(u)ukx∂x

+ cij2 k(u)ukxx + cij2 km(u)ukxu
m
x ,

Aij3 =gij3 (u)∂3x + bij3 k(u)ukx∂
2
x

+ [cij3 k(u)ukxx + cij3 km(u)ukxu
m
x ]∂x

+ dij3 k(u)ukxxx + dij3 km(u)ukxu
m
xx + dij3 kmn(u)ukxu

m
x u

n
x.



Homogeneous operators and integrable systems

Two main mechanisms generate many bi-Hamiltonian systems
from higher-order homogeneous operators:

I Compatible triples (regular mechanism):
I with third-order operators: KdV, Camassa–Holm,

dispersive water waves (Antonowicz–Fordy 1989), coupled
Harry–Dym, etc..

I with second-order operators: AKNS, 2-component
Camassa-Holm, Kaup–Broer (Kuperschmidt 1984), etc..

I Compatible pairs (singular mechanism):
I with third-order operators: Monge–Ampère, WDVV,

Oriented Associativity (or F -manifolds) equation (as
quasilinear systems of the first order);

I with second-order operators: new systems here!



Bi-Hamiltonian structures from compatible triples

A classification of bi-Hamiltonian hierarchies which are defined
by a triple of mutually compatible Hamiltonian operators was
provided by Lorenzoni, Savoldi, V. (JPA 2017).
Examples: scalar case. We have one third-order operator A3,
two first order operators P1, Q1:

[A3, P1] = [A3, Q1] = [P1, Q1] = 0

P1 = ∂x, Q1 = 2u∂x + ux, A3 = ∂3x.

KdV hierarchy (Magri (1978)):

Πλ = Q1 + ε2A3 − λP1 = 2u∂x + ux − λ∂x + ε2∂3x

Camassa–Holm hierarchy:

Π̃λ = Q1 − λ(P1 + ε2A3) = 2u∂x + ux − λ(∂x + ε2∂3x).



Example: 2-component case. We have one second-order
operator A2 and two first-order operators P1, Q1, all of them
mutually compatible:

P1 =

(
0 ∂x
∂x 0

)
, Q1 =

(
2u∂x + ux v∂x

∂xv −2∂x

)
,

A2 =

(
0 −∂2x
∂2x 0

)

I Πλ = Q1 + ε2A2 − λP1 AKNS (or two-boson) hierarchy;

I Π̃λ = Q1 − λ(P1 + ε2A2) two-component Camassa-Holm
hierarchy.



Aims of the talk

I Give new projective-geometric properties of second-order
homogeneous Hamiltonian operators;

I classify second-order homogeneous Hamiltonian operators
with a small number of components: n 6 8;

I describe the quasilinear systems of first-order PDEs which
are Hamiltonian with respect to the above operators;

I recall and compare analogous results on third-order
homogeneous Hamiltonian operators.



Canonical forms of homogeneous Hamiltonian operators

In the non-degenerate case (det(gij) 6= 0) the coefficients cij2k(u)

and dij3k(u) transform like linear connections; it can be proved
that they are symmetric and flat. In flat coordinates we have
the canonical forms (Potemin ’86, ’97; Potemin–Balandin, ’01;
Doyle ’95)

Aij2 = ∂x ◦ gij2 ◦ ∂x,

Aij3 = ∂x ◦ (gij3 ∂x + cij3 ku
k
x) ◦ ∂x,

The flat coordinates are Casimirs of the operators A2 and A3.



Second-order operators

Consider the second-order case:

Aij2 = ∂x ◦ gij ◦ ∂x, (1)

where gij = gij(u), i, j = 1, . . . , n. The skew-symmetry and
Jacobi property of the Poisson brackets defined by the
homogeneous second-order Hamiltonian operator A are
equivalent to:

gij = Tijku
k + g0ij , (2)

where Tijk and g0ij are constant and skew-symmetric (Potemin
’86, ’97; Doyle ’95).

IDEA: try to see if known projective-geometric results from
third-order operators (collaboration with E. Ferapontov, M.
Pavlov, JGP 2014, IMRN 2016, LMP 2018) can be somehow
reproduced.



New results: projective invariance

Theorem 1. Let Aij2 = ∂x ◦ gij ◦ ∂x be a homogeneous
second-order Hamiltonian operator (in canonical form). Then,
reciprocal transformations of projective type

dx̃ = ∆dx, ũi = Si(uj) = (Siju
j + Si0)/∆

with ∆ = S0
i u

i + S0
0 preserve the canonical form of second-order

homogeneous operators (Vergallo, V., arXiv 2022). The leading
coefficient matrix gij is transformed (in lower indices) as

gij →
g̃2 ij
∆3

.

The canonical form of the operators is preserved (as in the
third-order case!).



New results: projective interpretation

Let us set

Tn+1 jk = −Tj n+1 k = Tjk n+1 = g0jk.

We will use Greek indices with the range 1,. . . , n+ 1. Then, a
projective reciprocal transformation (aαβ) ∈ SL(n+ 1,C)
induces a transformation

Tλµν =
1

∆3
T̃αβγa

α
λa

β
µa

γ
ν .

Let us identify ω ∈ ∧3(Cn+1)∗ with maps:

i(ω) : Cn+1 → ∧2(Cn+1)∗, v 7→ 1

3
iv(ω).

In coordinates: ωλµνdv
λ ∧ dvµ ∧ dvν 7→ ωλµνv

νdvλ ∧ dvµ.



New results: projective interpretation

Theorem 2. There is a bijective correspondence between

I homogeneous second-order Hamiltonian operators in
canonical form, in dimension n, and

I 3-forms in Cn+1.

(Tijku
k + g0ij)du

i ∧ duj 7→ ωλµνdv
λ ∧ dvµ ∧ dvν

The bijective correspondence is preserved by projective
reciprocal transformations up to a conformal factor.



Digression: Plücker’s line geometry

Two points U, V ∈ P(Cn+1),

U = [u1, . . . , un+1], V = [v1, . . . , vn+1]

define a line with coordinates pλµ = det
∣∣∣ uλ uµ

vλ vµ

∣∣∣ inside a new

projective space: P(Cn+1) ↪→ P(∧2Cn+1) (Plücker’s embedding).

Any 3-form ω ∈ ∧3Cn+1∗ defines the following system of linear
equations in Plücker’s space:

iL(ω) = 0, L ∈ ∧2Cn+1;

in coordinates, L = pλµ∂λ ∧ ∂µ and the system is: ωλµνp
µν = 0.



Digression: Plücker’s line geometry

Intersecting the above system with the Grassmannian

G(2,Cn+1) ⊂ P(∧2Cn+1)

we obtain, in the generic case, a linear line congruence, an
algebraic variety of dimension n− 1:

Xω = G(2,Cn+1) ∩ {iLω = 0}.

In De Poi, Faenzi, Mezzetti, Ranestad, Ann. I. Fourier 2017
there is a detailed study of the geometric properties of such
varieties. It is remarkable that they are Fano varieties (of index
3).



Projective classification

3-forms are classified under the action of SL(n+ 1,C)
(Gurevich, 1964). We stress that n must be even.

I n = 2: we have only one operator, defined by the 3-form
ω = dv1 ∧ dv2 ∧ dv3:

gij =

(
0 1
−1 0

)
, A = gij∂2x

I n = 4: only one orbit with representative

ω = dv5 ∧ (dv1 ∧ dv2 + dv3 ∧ dv4),

defines a non-degenerate operator, namely

A =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ∂2x. (3)



Projective classification

I n = 6: the open orbit is generated by

ω = dv1 ∧ dv2 ∧ dv3 + dv4 ∧ dv5 ∧ dv6

+ dv7 ∧ (dv1 ∧ dv4 + dv2 ∧ dv5 + dv3 ∧ dv6). (4)

Then, using the affine projection v7 = 1, dv7 = 0:

i(ω) =
1

3
(v3dv1 ∧ dv2 − v2dv1 ∧ dv3 + v3dv1 ∧ dv2+ (5)

v4dv5 ∧ dv6 − v5dv4 ∧ dv6 + v6dv4 ∧ dv5+ (6)

dv1 ∧ dv4 + dv2 ∧ dv5 + dv3 ∧ dv6) (7)



Projective classification

I n = 6 (continued): the associated 2-form is (up to a factor)

g1ij =



0 v3 −v2 1 0 0
−v3 0 v1 0 1 0
v2 −v1 0 0 0 1
−1 0 0 0 v6 −v5
0 −1 0 −v6 0 v4

0 0 −1 v5 −v4 0

 (8)

and det(g1ij) = (v1v4 + v2v5 + v3v6 − 1)2.
There are 4 more closed orbits that lead to non-degenerate
Hamiltonian operators; the representatives do not depend
on parameters.



Projective classification

n = 8: we use the classification of trivectors in dimension 9
(Vinberg–Elashvili 1988). Every trivector can be represented as
a sum p+ e, where p is semisimple and e is nilpotent, with
p ∧ e = 0 (Jordan decomposition). Semisimple trivectors are
generated by linear combinations

p = λ1p1 + λ2p2 + λ3p3 + λ4p4, with

p1 = dv1 ∧ dv2 ∧ dv3 + dv4 ∧ dv5 ∧ dv6 + dv7 ∧ dv8 ∧ dv9

p2 = dv1 ∧ dv4 ∧ dv7 + dv2 ∧ dv5 ∧ dv8 + dv3 ∧ dv6 ∧ dv9

p3 = dv1 ∧ dv5 ∧ dv9 + dv2 ∧ dv6 ∧ dv7 + dv3 ∧ dv4 ∧ dv8

p4 = dv1 ∧ dv6 ∧ dv8 + dv2 ∧ dv4 ∧ dv9 + dv3 ∧ dv5 ∧ dv7

and λi satisfy a system of algebraic inequalities.



Projective classification

n = 8 (continued): there are 132 classes of trivectors that yield
non-degenerate leading coefficients of second-order
homogeneous Hamiltonian operators.

n > 10 wild! Too many parameters.



Projective invariance of compatible triples

Consider a reciprocal transformations of projective type:

dx̃ = ∆dx, ũi = Si(uj) = (Siju
j + Si0)/∆

where ∆ = S0
j u

j + S0
0 . Then, in triples/pairs of homogeneous

Hamiltonian operators P1, Q1, A2/3,

I A2 and A3 transform into new second-order and third-order
homogenous Hamiltonian operators in canonical

Aij2 = ∂xg
ij
2 ∂x, Aij3 = ∂x ◦ (gij3 ∂x + cij3 ku

k
x) ◦ ∂x;

I P1 (or Q1) transform into new non-local first order
homogeneous Hamiltonian operators (Ferapontov 1991).

Problem: projective classification and geometric significance of
triples! Initiated in Lorenzoni, Savoldi, V. JPA 2017.



Hamiltonian systems

Problem: find systems that admit a Hamiltonian formulation by
a second-order homogeneous Hamiltonian operator.

Inspired by a well-known result: Theorem (Tsarev, 1985) A
quasilinear first-order system

uit = V i
j (uk)ujx

admits a first-order homogeneous Hamiltonian operator P1 if
and only if

gik1 V
j
k = gjk1 V

i
k , ∇iV j

k = ∇jV i
k

we use a technique by Kersten, Krasil’shchik and Verbovetsky
(JGP 2004) to generalize it to higher-order homogeneous
operators.



Hamiltonian systems for higher-order operators

Theorem A quasilinear first-order system of conservation laws
admits

I (Vergallo, V. DGA 2021, arXiv 2022) a second-order
homogeneous Hamiltonian operator A2 if and only if

g2 qjV
j
,p + g2 pjV

j
,q = 0,

g2 qkV
k
,pl + g2 pq,kV

k
,l + g2 qk,lV

k
,p = 0.

I (Ferapontov, Pavlov, V. LMP 2018) a second-order
homogeneous Hamiltonian operator A3 if and only if

g3 imV
m
,j = g3 jmV

m
,i

c3mkjV
m
,i + c3mikV

m
,j + c3mjiV

m
,k = 0,

V k
,ij = gks3 c3 smjV

m
,i + gks3 c3 smiV

m
,j



Hamiltonian systems of conservation laws, singular
mechanism

Theorem (Vergallo, V. arXiv 2022) All systems of conservation
laws that admit a second-order homogeneous Hamiltonian
operator A2 in canonical form

uit = (V i(uk))x = Aij2
δH

δuj

have the fluxes:

V i(uk) = gij2 (Wjlu
l +Bj), Wjl = −Wlj ,

where Wjl, Bj are arbitrary constants. It turns out that the
fluxes are rational functions. The eigenvalues of the Jacobian
(V i
,j) are double. The Hamiltonian is nonlocal: if bix = ui, then

H = −
∫ (

1

2
Wslb

l
x +Bs

)
bs dx.

The Haantjes tensor of V i
,j vanishes identically: H i

jk = 0.



Further properties of the Hamiltonian systems

I The systems can be identified with a linear line congruence
in P(Cn+2): for this reason (Agafonov and Ferapontov,
∼1990), the systems are linearly degenerate.

I The systems are: linearizable when n = 4, just one non
linearizable when n = 6, a non-linearizable 4-parameter
family (with subfamilies) when n = 8.

I Experiments show that random systems in dimension
n = 6, n = 8 are diagonalizable, hence semi-Hamiltonian
(Sevennec 1993).



Example

The operator A2 = ∂xg
ij∂x defined by

gij =


0 u3 −u2 0
−u3 0 u1 0
u2 −u1 0 1
0 0 −1 0

 (9)

defines the following system:

u1t =

(
c4
(
u1
)2

+
(
c1u

2 + c2u
3 + c8

)
u1 + c10u

3 − c1u1 − c2
u3

)
x

u2t =

(
c1
(
u2
)2

+
(
c3u

3 + c4u
1 + c8

)
u2 + c9u

3 + c4u
4 + c6

u3

)
x

u3 =
(
c1u

2 + c3u
3 + c4u

1 + c7
)
x

u4t =

((
c1u

2 + c3u
3 + c4u

1
)
u4 + c2u

2 + c5u
3 + c6u

1

u3

)
x

(10)
where ci are parameters, i = 1, . . . , 10.



Comparison with third-order homogeneous Hamiltonian
operators

Third-order homogeneous Hamiltonian operators (results by
Ferapontov, Pavlov, V.):

I are canonical form-invariant with respect to reciprocal
projective transformations;

I are classified up to a number of components n 6 4;

I correspond to quadratic line complexes and split as the
square of a linear line complex;

I define Hamiltonian systems of first-order conservation laws
that are linearly degenerate and non-diagonalizable.



Perspectives

Integrable PDEs Projective Geometry

Third-order Hamiltonian op. quadratic line complex

Second-order Hamiltonian op. linear line congruence

Quasilinear system linear line congruence

First-order compatible Ham. op. ???

Triples P1, Q1, A2/3 and pairs P1, A2/3 of compatible operators
are invariant under projective reciprocal transformations
(provided we allow for nonlocal Ferapontov operators in the
orbit). The projective-geometric invariance of the corresponding
hierarchies has implications that are yet to be understood.



Thank you!
Contacts: raffaele.vitolo@unisalento.it


