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Plan of the talk

» Bi-Hamiltonian systems of PDEs: KdV-type and
WDVV-type

» Compatible pairs of operators: structure and geometry,
from a joint work Lorenzoni — Opanasenko — V. (to appear
soon in arXiv).

» A study of bi-Hamiltonian PDEs of WDV V-type, from a
joint work Opanasenko — V. PRSA 2024.



Bi-Hamiltonian systems

We consider evolutionary equations with unknowns

ut =ul(t,z),i=1,...,n.

A wide class of known bi-Hamiltonian systems have their
Hamiltonian operators A, B in the form of linear combination
of 0,-homogeneous Hamiltonian operators with different
homogeneity degrees:

P:P1+652+6253+...
Q:Q1+6R2+62R3+...

Frequent combinations:
P =P, Q= Q1+ € Rs,
WDV V-type systems:

P=r, Q = R3.



Bi-Hamiltonian systems from
combinations of Hamiltonian operators

Two mechanisms for many well-known integrable systems:
» Compatible triples (regular mechanism):

» with third-order operators: KdV, Camassa—Holm,
dispersive water waves (Antonowicz—Fordy 1989), coupled
Harry-Dym, etc..

» with second-order operators: AKNS, 2-component
Camassa-Holm, Kaup—Broer (Kuperschmidt 1984), etc..

» Compatible pairs (singular mechanism):

» with third-order operators: Monge—Ampere, WDVV,
Oriented Associativity (or F-manifolds) equation (as
quasilinear systems of the first order);

» with second-order operators: new systems, no well-known
example.



Bi-Hamiltonian systems of KdV-type

(Savoldi, Lorenzoni, V. 2018; Lorenzoni, V. 2024) The KdV
equation:
Uy = Uty + €Uy

We have three compatible Hamiltonian operators:

1 2
P = 8:1:7 Ql = gu:r + guama R3 = Opga

The bi-Hamiltonian formalism:
A =P, Ay = Q1+ ¢*Rs

with Hamiltonians: Hy = u®/6 + u2 /2, Hy = u?/2.

NOTE: the re-combination A1 = @1, A2 = P; + Rj3 yields the
Camassa-Holm hierarchy.



Hamiltonian PDEs

An evolutionary system of PDEs

F=ul— fit,z, o ,ul,ul,,..

)=0

admits a Hamiltonian formulation if there exist A, H = [ hdx
such that

OH OH oh
—_ Z‘y i - = - g -
up = A (5u ) ,  with Su (—1)70, ol

where A = (AY) is a Hamiltonian operator (Poisson tensor), i.e.
a matrix of differential operators A% = A%°9,, where

Oy = Oy 0 -+ 00, (total z-derivatives o times), with further
properties.



Hamiltonian operators

A is a Hamiltonian operator if and only if

{F,G}a = OF jijey, 9G4y

ou 7 6ud
is a Poisson bracket (skew-symmetric and Jacobi).

{, } 4 is a Poisson bracket if and only if:
> A is skew-adjoint: A* = —A, where

A* () = (=1)705 (A974;)
» The variational Schouten bracket vanishes:
[A, A", ¥?, ¥°) =

ijo
O (1), (A%, ()3 + eyelic(1,2,3)| = 0

2| —
dul

(the r.h.s. is defined up to total derivatives 0,(B)).



Homogeneous operators

Homogeneous operators were introduced in 1983-1984 by
Dubrovin and Novikov. They are form-invariant under a point
transformation of dependent variables 4’ = U(u?).

First-order local case:

P = gi(u)d, + by (wul

Homogeneity: degd, = 1.

Ferapontov first-order nonlocal case:

PY = g (), + b (i + Pl ks Ll

where ¢ = ¢P% is a constant matrix.



Differential geometry and homogeneity

We work in the non-degenerate case det(g%/) # 0. Let
(gi5) = (97)~".
After a point transformation 4' = U (u?):
> gt (u) transforms as a contravariant 2-tensor;
» Then
Fé‘k = _gjpbii

transform as the Christoffel symbols of a linear connection.



Differential geometry and the Hamiltonian property

Skew-adjointness is equivalent to:
» symmetry of g%;
» the condition gz,i =T Z] + Ffj, where glk = 0g" Jou®.

Jacobi identity holds iff:
> ¢iTI" = ¢isT; this implies that T is metric: V[[]g = 0;
> F;'.k = F};j i.e. T is symmetric, so it is the Levi-Civita
connection of g;j;

» the following conditions hold:

giSwZ = gjswi, V[F]iwi = V[F]kwj

R [wa? wﬂ] = 0;
» the curvature condition holds:

R[T, = Caﬁ(wihwfak - wik“{éh)'



Higher-order homogeneous operators

Higher order homogeneous operators were introduced in 1984
by Dubrovin and Novikov. We consider here second-order and
third-order homogeneous operators:

RY =g% (w)92 + b, (w)uto,

+ szjk(u)uim + Cijm(U)ul;umm,

RY =g (w)d2 + b, (w)ulo?
+ el (W, + L (wyubuo,

+ déjk(u>um:a: + déjkm(u)uxugenx + dgjkmn(u)uxugnug.



Differential geometry and homogeneity

We will work in the non-degenerate case det(g,ij )#£0, k=1,2.

After a point transformation 4’ = U (u?):
> g5, g5 transform as contravariant 2-tensors;
i g P i g JP° :
> I ik = —g]pcg i and I's k= gjpds j, transform as linear
connections.



Differential geometry and the Hamiltonian property

It was proved (Potémin, 1992; Doyle, 1992) that the
Hamiltonian property implies that
> Fg ik and Fé ;K are symmetric and flat;

» in flat coordinates, we have
Ry = ax(g;])ax§

R3 = Ox(géj&r + céjkuk)ﬁx.

T



The Hamiltonian property

Ro: g9 i5 = ﬂjkuk + 1ok, where T' is completely
skew-symmetric and constant;

Rs: let ciji = g3iq93jpChi; the following properties hold:

1 , .
Cnkm = g(gi’mm,k - g3nk,m>7 g3 I\V'Ionge metric;

93mn.k T 93nk.m + 93kmn = 0,

— bq
Cmnk,l = —93 CpmiCqnk-



A prototype: WDVV equation

The simplest associativity Witten—Dijkgraaf—Verlinde—Verlinde)

equation:

fttt = f:z:ct - f:(::r:a:frtt

f = f(t,$),

can be presented as a system of conservation laws by means of
the change of coordinates u! = frpe, U2 = foat, U> = for as

1 2
ua —ug,
Uy = Ug,
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Bi-Hamiltonian structure of WDVV equation

Ferapontov, Galvao, Mokhov, Nutku, CMP (1997) found out
that the above WDVV first-order system can be rewritten as

6H,  _.0H,
i = pi O _ pig 0113
Yt b sui T Sui’

=, Hy= =l (0, 1)? — (0, (0 )

—30, 10,a 0,b
P = | ta0, 1(9,b+09,) 3¢0, + c; ,
bo,, 30,c—cx  (b*—ac)d, + 9,(b* — ac)
0 0 O
R3=0,|0 0O, —0za Oy
0y —a0y (0zb+ b0, + adza)



Bi-Hamiltonian equations of WDV V-type

We introduce the class of systems of conservation laws
up = (Vi) g, i=1,...,n

which are bi-Hamiltonian by a pair of
P a first-order homogeneous operator of Ferapontov type;

» a third-order homogeneous operator in canonical form.

Indeed, third-order operators as above are classified under the
action of various groups; the groups keep the form of the
first-order operator stable.



Preliminaries: compatibility conditions

Compatibility conditions [Py, R3] = 0 have been derived in a
recent work (Lorenzoni, Opanasenko, V., to appear in arXiv
soon). Among the main results we find:

» the compatibility conditions have been integrated to
algebraic equations;

» the nonlocal part of P; is made by Hamiltonian systems of
R3; it was previously found (Ferapontov, Pavlov, V. 2018)
that such systems are determined by linear algebraic
equations;

» it has been proved that gij is completely determined by a
n x n matrix Q*? of quadratic functions of the field
variables.

NOTE: Nijenhuis tensor is not vanishing — no Nijenhuis
geometry here!



n = 2: affine classification

The affine classification of third-order operators in canonical
form is (Ferapnotov, Pavlov, V. 2014)

10 0 D, 2t
RW = DI, R® =D, « “S w2 | Da,
(0 1> g G I D

u2
R® =D, ( Ds Dour ) D,.

2)2 212

wl

RW is the Hamiltonian operator of linear systems of
conservation laws, so we discard it.



n = 2: affine classification

R® is the Hamiltonian operator of the systems

2\2
up = (au! + pu?),, ui= (au2 + W) :

u x
There are two inequivalent cases: (5, «) = (1,0) and
(8,a) = (0,1); we focus on the first case, which is
bi-Hamiltonian with respect to three mutually compatible
first-order local homogeneous Hamiltonian operators P(2?)
determined by the metrics

1 1
21) _ [ U 0 22y _ (0 w
g( ) - ( 0 (u21)j+'y> ) g( ) - (Ul 2u2> )

92 (u?)2 4y
9(273) = <(u2)1é+'y v )
At O

u



n = 2: affine classification

R®) is the Hamiltonian operator of the systems

B(u?)? 4+ yu? — ﬁ)

ul

up = (au' + pu?),, uf = (au2 +

Two inequivalent cases: (3,a) = (1,0) and (8,a) = (0,1); we
focus on the first case, which is bi-Hamiltonian with respect to
three mutually compatible first-order local homogeneous
Hamiltonian operators P determined by the metrics

1
_ 0 0 ul
31 _ [ (32) _
9 - ( 0 (MQ)QJ;?Wﬁl) 9 = <u1 202 +’Y> )

g = (u2)24yu2—1 76 .
ul



n = 2: projective classification

Reciprocal transformations are nonlocal transformations of the
independent variable that were introduced to linearize some
quasilinear first-order systems in gas dynamics (Rogers, 1968).

We will use projective reciprocal transformations, i.e.:
ayd i
i Tiw! + T
u' = N
A= Tjouj + 17

di = Adz, di = dt

When n = 2, the only equivalence class of third-order operators
is represented by R(); the corresponding Hamiltonian systems
are linear, so we do not consider them.



n = 2: a well-known example

The Chaplygin gas system:
Vg
ut+uux+U73 =0, v+ (uw)y=0

is known (Mokhov, Nutku 1998) to admit three first-order
Hamiltonian operators. It can be diagonalized as

Ut = VUJ;, ‘/t == UV;U,

to which one of the systems of the classification can be reduced
by a nonlinear transformation. So, the above systems also have
a compatible third-order homogeneous Hamiltonian operator
which is mot in canonical form.



n = 2: another well-known example

The Monge-Ampere equation

2
U Ugg — U, = —1L.

By means of ul = Uye, u? = uy, it can be made into the system

212
U —1
ut =, uf—_<(> )
x

ul

which is bi-Hamiltonian by means of R(?) (Mokhov, Nutku
1998) and one of the three first-order operators listed above.
Again, a nonlinear transformation brings the above system into
the Chaplygin gas system.



n = 3: partial projective classification

The WDV V-type systems are bi-Hamiltonian with respect to P;
and R3, and have the form

ul = (V9,, i=1,...,n.
We recall (Balandin—Potemin) that the operator
RY = 0,(f90, + cuk)o,

is completely determined by the Monge metric f;;, which splits
as

fii = Capt? )
where ¢, is a constant symmetric matrix and ¢§* is a matrix
of linear functions subject to algebraic constraints.



n = 3: partial projective classification

It can be proved that the compatible Ferapontov operator P; in
low dimension has the form

Plij = giij +T9us + MV D VIl
+ 2 (V;uiDglué + uiD;leju;) + i Dl
where the metric has the form gi] = @é@aﬂwé, with Q*° a
quadratic function, and Vi= OV'/Ow! is the Jacobian of the
vector of fluxes of the system.



n = 3: partial projective classification

The classification of third-order operators under projective
reciprocal transformations with ¢ = ¢, Monge metrics:

(W?)? + Culu? — B 22
f(l) = | —ulu? —u® (W) 4+ p@®)? —pted -t

2u? —putu® —ut p(u?)? +1

2u? —u 1 0

—2u? Wl 0 —2u? w' 1
D=1 w 0 of, fO=w 1 0], fO=
0 0 1 1 0 0

W +1 —vr® —u® 207 W)*+1 -
e A U M I A (AT Ok



n = 3: partial projective classification

Case R, Linear systems, out of consideration here.
Case R®). Our prototype WDVV equation.

Case R*. The following WDVV bi-Hamiltonian system
(Kalayci, Nutku, 1998):

22, .3
1_ 2 s ((W)*+u 31
Uy =u Uy = | ——7 | » U = Uy,
X

P is local: ¢®8 = 0.



n = 3: partial projective classification

Case R®). Another WDVV bi-Hamiltonian system (Agafonov

1998; Ferapontov, Pavlov, V. 2018; Vasicek, V. 2021):

u2(u2+u3)—1> 3
- )

_ .1
ul Uy = Uy,

= = (
In view of compatibility, gij = 1/13@‘”51%, where c¢!! = ¢ = —1,
2 =c* =0and

Qll — 4(u1)2 + (u2)2 + 17 Q12 — _3u1’ Q13 — _2u2 . u37
Q22 _ (ul)Q + (u3)2 + 4’ QQS _ ul(u2 + 2u3),
Q33 —_ (ul)Q + (u2 + 2u3)2 + 17

0 1 100
W= u 0 0], (pasg)=[0 1 0
10 0 0 1



n = 3: partial projective classification

Case R(®). The Hamiltonian system

u%:(au2+ﬁu3)1’7

<<u2>2—1><au2+5u3)—<w+6u1>)
S z’

=
= (u2u3—u1>(au2+sﬂu3>—u1(w+au1> )

)
T

where S = u'u? —u? and «, 3,7, are arbitrary constants. We

have g/ = wéQo‘ﬁwé, where: ¢!t =3, 2 = =0, 2 = -2,
QU=2(A%4+B?244BC+2AC), Q'“2?=2(3AD—-BC),
Q¥=2B(2A+3C), Q?»?=-2(24+C)(2A+3C)

Q?3=8A2+10AC+2BD Q33=—6A%2+2B2,

A=au?4pu®, B=ful4a, C=du'+y, D=éu’+~yu?,

u? 0 1 1 00
()= —u' —u® 0], (pag)=[0 0 1
1 w2 0 01 1



n = 3: partial projective classification

Case R(M). The Hamiltonian system

utlz(auQ—l—Bu?’)z,

o [ (@H2=p)(au?+8u) +7(1-p(d)H)+5(ul —pu?u®)
uy= 3 s
x
s [(oud(@H2—p)+6ud (e —pul)
uy= 3

w(ul—uu2u3>+6(<u1>2—u<u3>2))
+ b ,

where S = ulu? — u3 and «, 8,7,0 are arbitrary constants. We
have gy = ngaﬂwé, where the nonlocal part has the
coefficients:

Mo 243 A2 2o s 2= P62 4 4u26% —



n = 3: partial projective classification

... the matrix Q®? is given by:

QM=—(u?-1)(u*(A+C)?+u(B*+D?)—2BD—4EF),
QP=—(?-1)(nED-FB), QY¥=—(u*-1)(uB(2E+F)-3DE),
QP =—F?p3—p?(4A*+D?)+u(8BD+F?)-3D?,

Q% =—p?(2BD+(u'u?—u?)(ad—B7))+4u(B?+D?)-5BD—EF
Q3B¥=—p?E?—u?(B24+4D?)+u(E?*+8BD)-3B2,
A=pul+6u?, B=oau?+pu3, C=vyu?+a,

D=éul+y, E=ful4a, F=6ud+yu?
and the Monge metric has the decomposition
u? 0

1 1 00
()= —ut —u® 0], (pap)=[0 n 1
1w 0 0 1 p



n = 3: projective classification

It was proved (Ferapontov, Pavlov, V. 2018) that third-order
homogeneous Hamiltonian operators in canonical form are
invariant also with respect to transformations that exchange ¢
and z.

This, together with the previous projective reciprocal
transformations generate a larger group of reciprocal
transformations of the following type:

di = (A + Ag)dx + (A V' 4 Cp)dt,
dt = (Bsu' + Bo)dx + (B;V' + Dy)dt,
Under this group, there are two equivalence class, represented

by Rés), which correspond to our prototype WDVV equation,
and Réﬁ), which defines linear equations only.



n = 4: no-go examples

Not all third-order homogeneous Hamiltonian operators and
associated systems admit a compatible first-order local or
nonlocal Hamiltonian operator. As an example, consider
systems studied by Agafonov in 1998:

Ferapontov, Pavlov, V. (2018) proved that the above system is
Hamiltonian with respect to Rs only for two values of f:

fi(u) = (u2)2 —ulud, fa(u) = (u?’)2 —u?ut + ot (2)

Proposition. There does not exist a compatible first-order
operator for the above systems.



n = 4: a bi-Hamiltonian example

It is conjectured (E.V. Ferapontov) that there is a unique
integrable case within the class of systems of conservation laws
that are Hamiltonian with respect to a Rs:

uf = u3

2=

o= ulu ut +ud(u?)? + (ut)? — (u?)? - 1) (3)
t ulu? + vlut v

)
x

( u?ud 4+ ud((u?)? + (uh)? — (ul)? — 1>>

wlud + u2u?t



n = 4: a bi-Hamiltonian example

The system is known (Ferapontov, Pavlov, V. 2018) to possess a
Lax pair and a Hamiltonian operator Rs defined by a Monge

metric f = (fz])

(u2)2+(u3)2 + 1 _u1u2 + u3u4 _u1u3 +u2u4 _2u2u3
*UIUQ + u3u4 (u1)2+(u4)2+1 72u1u4 u1u3 o u2u4
(i) = | _ut® 1 u? —2uty? (W) +@w")?  w'v® — vl
—2u2u3 u1u3 _ u2u4 u1u2 _ u3u4 (u2)2+(u3)2
We have f;; = gpa/gv,bf‘wf where
—u?2 —ud 1 0 1 0 0 O
1
U —u* 0 1 01 00
\I/ = (I) =
—ut w0 o 0010
w w00 0001



n = 4: a bi-Hamiltonian example

The system is Hamiltonian with respect to a first-order nonlocal
Hamiltonian operator P, that is compatible with R and is
defined by the metric gi = i, Q*? %, where

Cll — 022 — 1’ C12 — 021 — 0’
Qll — (u1)2 + (u2)2 + (u3)2 + (u4)2’ Q12 — _2u1u4 + 2u2u3’
Ql?) _ —’U,2 Ql4 — Ul

QQQ —_ (UI)Q + (u2)2 + (’LLS)Q + (U4)2 + 1’ QQS — —2U3,
Q24 — _2u4’ Q33 — (u1)2 + (u3)2 + 1’ Q34 _ u1u2 + u3u4’
QM = (u)? + (u)? + 1.



n = 6: further examples

» Pavlov and V. in LMP 2015 found a common
bi-Hamiltonian pair of WDV V-type for two commuting
first-order quasilinear systems of PDEs obtained from
N =4 WDVYV equations.

» Opanasenko and V. in PRSA 2024 found a common
bi-Hamiltonian pair of WDV V-type for two commuting
first-order quasilinear systems of PDEs related with
integrable Lagrangians of the form

/L(um, Ugy, Uyy)dx A dy.

(from the paper Second-order integrable Lagrangians and
WDVV equations by Ferapontov, Pavlov, Xue, arXiv 2020).



n = 6: further examples

» Opanasenko and V. (to appear in arXiv soon) proved that
WDVYV equations in all dimensions N, once rewritten as
N — 2 commuting systems of first-order PDEs, admit a
Hamiltonian operator of the form of R3. When N = 4, the
systems are bi-Hamiltonian of WDV V-type.



Final remarks

We recall the bi-Hamiltonian pencil:

P:P1+€R2+62R3+...
Q=0Q1+eSy+ €255+ . ..

An extension to an infinite formal sum is a building block of
Dubrovin—Zhang’s perturbative approach to the classification of
Integrable Systems. WDV V-type systems are somehow
“singular” to this classification program.

In principle, extensions to include 0-degree operators are
possible (recent studies by Dell’Atti, Oliveri, Rizzo, Sgroi,
Vergallo in arXiv), but their application to the study of
integrable hierarchies is not known.



Thank you!

Contacts: raffaele.vitoloQunisalento.it



