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Introduct

(Q,L): a Lagrangian system, L € C*°(TQ)

TQ —%-T+Q

Remark: If Leg is a diffeomorphism

then H=Eoleg ' € C>°(T*Q), E=AL— L and

(HE) sw|s — dH|s =0, c:R—T"Q

Theorem: (if L is regular) the HE cover the ELE via T*Q — Q

One wants to find solutions of the HE/ELE!
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(Q, L): aregular Lagrangian system, H € C°°(T*Q): the Hamiltonian
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Let T*(w) = T*(H) =0, then
@ integral curves v of V := Leg ' o T are solutions of the ELE,
o @ is foliated by solutions of the ELE

@ for any integral curve v of V, T o+ is a solution of the HE.
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(Q, L): aregular Lagrangian system, H € C°°(T*Q): the Hamiltonian

Hamilton-Jacobi Theorem «*

TQ=————T"Q (Leg )" (g) = 2
]\\ /A \\ To~y
v T
Q=< 5

Let T*(w) = T*(H) = 0, then

@ integral curves v of V := Leg ' o T are solutions of the ELE,

o @ is foliated by solutions of the ELE
@ for any integral curve v of V, T o+ is a solution of the HE.

im T is a Lagrangian submanifold preserved by Xp!
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Introducti

Locally, conditions T*(w) = T*(H) = 0 read
T=dS,  £.(H(q,05/9q))=0
This is not the whole story: complete solutions, integrability, ...

The Hamilton-Jacobi (HJ) formalism is a cornerstone of the calculus of
variations and the theory of Hamiltonian systems. Moreover, it is a first,
important step through the quantization of a mechanical system.

The aim of the talk is twofold:

@ to present a higher derivative, field theoretic analogue of HJ theory

@ to show that, when framed within Secondary Calculus, HJ field
theory is just Secondary HJ theory
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Multimomentum Bundles
Hamiltonian Formalism

a: P — M: a fiber bundle = J! — P: 1st jet bundle

Definition (extended multimomentum bundle .Z« — P)

Sections of .#Za — P = affine bundle morphisms J* — P xp A"T*M

Definition (multimomentum bundle JTaw — P)

Sections of Jfa — P = linear parts of sections of .#Z o — P.

Main Properties

e coordinates  (x,y?) on P == coordinates (x',y? pl, p) » on .#«
o .#a — Jiais a 1-dim. affine bundle with no distinguished section
e 7 a tautological n—form on .Za: ©g = p.dy® A d""1x; — pd"x
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Multimomentum Bundles
Hamiltonian Formalism

e m: E — M: afiber bundle =— 7 :J¥ = M: kth jet bundle,

coordinates (x',u) on P =  coordinates (x', u;) on J.
e S = [.Z: a (k+ 1)th derivative Lagrangian field theory on 7:
&L = L[x,uld"x, L[x,u] € C®(J).
@ Og: the tautological n—form on .

©p = pl'idU/ A d”_lx,- — pd"x

Assumption: (0?L[x, u]/Ouky10uk11) is non-degenerate. «
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Hamiltonian Field Theory Multimomentum Bundles
Hamiltonian Formalism

e O: a (dynamical) Hamiltonian n-form on Jimy:

© = pliduy A d""x; — H[x, u, p]d"x,
H[Xa u, p] = pl'iu/i - L[X7 U] |uk+1 = uk+1[X7 P, Ui, ..., Uk]
@ Hamilton-like equations
idO|, =0, o:M— Jim

locally,
p/Ai . _OH
bY '
(dDE) T
Iyi — opl7

Theorem: the dDE cover the ELE via Jimy — E




Hamiltonian Field Theory

Mechanics

Multimomentum Bundles
Hamiltonian Formalism

Field Theory

TAXxR— QxR

t,9,9

T*QxR— QxR

t,q,p
pdq — Hdt
/'éw o — dH‘g =0

Luca Vitagliano

KL 5 gk
Xi7 up
JTﬂ'k — Jk
Xy, pl

©

i»d®[, =0

Hamilton-Jacobi Field Theory
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Hamilton-Jacobi Field Theory An Example: The Biharmonic Equation

(Remark: V is a connection in mx) Let T*(d©) = 0, then

@ V-flat sections are kth jets jxs of solutions s of the ELE,
o If Vis flat, J* is foliated by kth jets of solutions of the ELE

@ for any V-flat section jis, T o jxs is a solution of the dDE.
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Hamilton-Jacobi Field Theory An Example: The Biharmonic Equation

Locally the (field theoretic) Hamilton-Jacobi equation T*(d®) = 0 reads

T:pl BU/S’ dft)f/ (2ZS"+ Hlx,u,05/0u]) =
A Toy Example

The biharmonic equation
Viu=0

is EL with second derivative action: S = f %u;ju"jd”x.

Remark: p¥ = u¥ and H = p'u; + 1p¥p;. dDE read

which covers V4u = 0.
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Hamilton-Jacobi Field Theory An Example: The Biharmonic Equation

The HJE reads

0iS + ui S+ 1S+ 25 51) 25 = f(x).

If $ = ¢(x) is a biharmonic function, then
Shi= uj(é,ji — ugfb,jji + G'(x)

is a solution of the HJE determining the connection V : J* — J? given by
V*(uj) = ¢,;j. V is flat with flat sections (foliating J') being 1st jets of
the biharmonic functions:

u=p(x)+ Aix' + B.
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£ C J" aPDE = & C J* its ooth prolongation.

& is a diffiety: i.e., it is endowed with an involutive distribution

(5:<...,D;,‘..>7 Di:%+“/iaim'

Solutions of £ are + n—dimensional integral manifolds of %'

Secondary calculus is a homological formalization of the idea of
differential calculus on the “manifold” of solutions of £

Example: secondary vector fields are higher symmetries of £

more precisely, they are cohomologies of a suitable Spencer complex
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Example: secondary differential forms are co ologies of
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@ ©*A°: Cartan form algebra, generated by ..., du; — ujdx’, ...

@ A°®: horizontal form algebra, generated by ..., dx’, ...

@ d: horizontal de Rham differential, d = dx'D;
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Secondary

Example: secondary differential forms are co ologies of

S EAN QN S G AT @A S

@ ©*A°: Cartan form algebra, generated by ..., du; — ujdx’, ...

@ A°®: horizontal form algebra, generated by ..., dx’, ...

@ d: horizontal de Rham differential, d = dx'D;

Cartan calculus have a secondary analogue!

Remark: interpretation of secondary functions

@ secondary functions of degree n are actions constrained by £
@ secondary functions of degree n — 1 are conservation laws of &£
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(m,S): a Lagrangian field theory, &g C J*°: the ooth prolong. of ELE

Theorem [Zuckerman]: &g, possesses a canonical (depending on S only)

secondary (pre)symplectic structure w (in horizontal degree n — 1),

Definition: (&gL,w) is called the covariant phase space (CPS)

Main Properties

@ X a Noether symmetry and f the corr. conserv. law = ixw = df
@ There is a “Poisson” bracket among conservation laws

@ kerw is made of gauge symmetries
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(w,S): a (regular) (k + 1)th derivative Lagrangian field theory,

Leg?
Sl <—— _/ka

N T*(d9)=0 (HJE)
\Y Jk T

imV C J¥*! may be interpreted as a PDE O. Let & C J™ be its infinite
prolongation. ¢ is finite-dimensional.

Theorem [LV]: if 3 a solution T of the HJE such that V = Leg *o T
then & is a (finite-dimensional) isotropic subdiffiety of (&g, w).

It is natural to formulate the HJ problem in secondary terms

The Secondary Hamilton Jacobi Problem: consists in searching for

(finite-dimensional) isotropic subdiffieties of the CPS.
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There exists a natural, geometric, higher derivative, field theoretic version
of (part of) the standard HJ formalism in Hamiltonian mechanics.

A solution of the field theoretic HJE determines an isotropic subdiffiety of
the CPS = secondary Hamilton-Jacobi theory of the CPS.

Open questions:

@ Can one define the concept of Lagrangian subdiffiety of the CPS?
@ If yes, how is it related to the field theoretic HJ theory?
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parameterized by initial data.
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HJ theory is a door through quantization. (Complete) solutions of the
HJE determines approximate solutions of the Shroedinger equation. A
complete solution maybe understood as a family of solutions
parameterized by initial data.

Open question:

Can one define complete solutions of the field theoretic HJE?

Maybe via a diffiety of initial data .#"! In fact the CPS is somehow
non-dynamical. Nonetheless, the ELE can be understood as secondary
ODEs on 1.

Perspectives:

Secondary HJ theory (semi-classical quantization?) on 4.
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o L. V., J. Geom. Phys. 59 (2009) 426.
e L. V., J. Geom. Phys. 60 (2010) 857.
e L.V, Int. J. Geom. Meth. Mod. Phys. 7 (2010) to appear in.
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