Hamilton-Jacobi Field Theory

Luca Vitagliano

University of Salerno INFN Levi-Civita Institute

Workshop on Geometry of Differential Equations and Integrability Hradec nad Moravicí, October 11–15, 2010

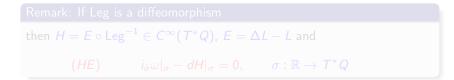
・ 同 ト ・ ヨ ト ・ ヨ ト

-

Introduction: Hamilton-Jacobi Theory

(Q, L): a Lagrangian system, $L \in C^{\infty}(TQ)$

$$TQ \xrightarrow{\text{Leg}} T^*Q$$



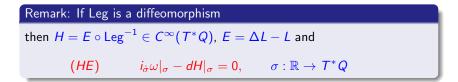
Theorem: (if L is regular) the HE cover the ELE via $T^*Q o Q$

One wants to find solutions of the HE/ELE!

Introduction: Hamilton-Jacobi Theory

(Q, L): a Lagrangian system, $L \in C^{\infty}(TQ)$

$$TQ \xrightarrow{\text{Leg}} T^*Q$$



Theorem: (if L is regular) the HE cover the ELE via $\, {\cal T}^* Q o Q \,$

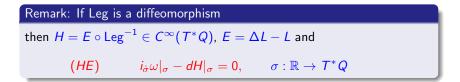
One wants to find solutions of the HE/ELE!

イロト 不得 トイヨト イヨト 二日

Introduction: Hamilton-Jacobi Theory

(Q, L): a Lagrangian system, $L \in C^{\infty}(TQ)$

$$TQ \xrightarrow{\text{Leg}} T^*Q$$



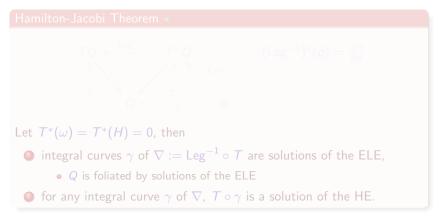
Theorem: (if L is regular) the HE cover the ELE via $T^*Q \rightarrow Q$

One wants to find solutions of the HE/ELE!

◆□> ◆□> ◆三> ◆三> ● □ ● のへの

Introduction: Hamilton-Jacobi Theory

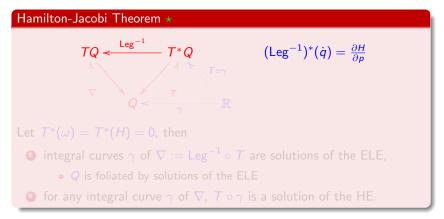
(Q, L): a regular Lagrangian system, $H \in C^{\infty}(T^*Q)$: the Hamiltonian



im T is a Lagrangian submanifold preserved by X_H !

Introduction: Hamilton-Jacobi Theory

(Q, L): a regular Lagrangian system, $H \in C^{\infty}(T^*Q)$: the Hamiltonian

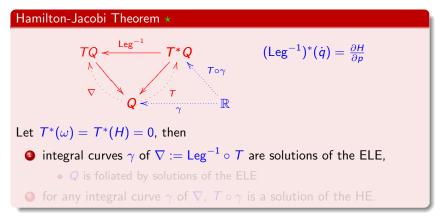


im T is a Lagrangian submanifold preserved by X_H !

イロト 不得 トイヨト イヨト 二日

Introduction: Hamilton-Jacobi Theory

(Q, L): a regular Lagrangian system, $H \in C^{\infty}(T^*Q)$: the Hamiltonian



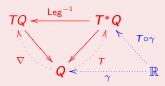
im T is a Lagrangian submanifold preserved by X_H !

イロン 不同 とくほう イヨン

Introduction: Hamilton-Jacobi Theory

(Q, L): a regular Lagrangian system, $H \in C^{\infty}(T^*Q)$: the Hamiltonian

 $(\operatorname{Leg}^{-1})^*(\dot{q}) = \frac{\partial H}{\partial p}$



Let $T^*(\omega) = T^*(H) = 0$, then

9 integral curves γ of $\nabla := \text{Leg}^{-1} \circ T$ are solutions of the ELE,

• Q is foliated by solutions of the ELE

) for any integral curve γ of abla, ${\mathcal T}\circ\gamma$ is a solution of the HE.

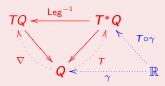
im T is a Lagrangian submanifold preserved by X_H !

Introduction: Hamilton-Jacobi Theory

(Q, L): a regular Lagrangian system, $H \in C^{\infty}(T^*Q)$: the Hamiltonian

 $(\operatorname{Leg}^{-1})^*(\dot{q}) = \frac{\partial H}{\partial p}$

-



Let $T^*(\omega) = T^*(H) = 0$, then

• integral curves γ of $\nabla := Leg^{-1} \circ T$ are solutions of the ELE,

• Q is foliated by solutions of the ELE

2 for any integral curve γ of ∇ , $T \circ \gamma$ is a solution of the HE.

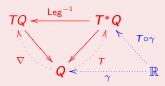
im T is a Lagrangian submanifold preserved by $X_H!$

Introduction: Hamilton-Jacobi Theory

(Q, L): a regular Lagrangian system, $H \in C^{\infty}(T^*Q)$: the Hamiltonian

 $(\operatorname{Leg}^{-1})^*(\dot{q}) = \frac{\partial H}{\partial p}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Let $T^*(\omega) = T^*(H) = 0$, then

9 integral curves γ of $\nabla := \text{Leg}^{-1} \circ T$ are solutions of the ELE,

• Q is foliated by solutions of the ELE

② for any integral curve γ of ∇ , $T \circ \gamma$ is a solution of the HE.

im T is a Lagrangian submanifold preserved by X_H !

Locally, conditions $T^*(\omega) = T^*(H) = 0$ read

 $T = dS, \qquad \frac{\partial}{\partial q} \left(H(q, \partial S/\partial q) \right) = 0$

This is not the whole story: complete solutions, integrability, ...

The Hamilton-Jacobi (HJ) formalism is a cornerstone of the calculus of variations and the theory of Hamiltonian systems. Moreover, it is a first, important step through the quantization of a mechanical system.

The aim of the talk is twofold:

- It o present a higher derivative, field theoretic analogue of HJ theory
- to show that, when framed within Secondary Calculus, HJ field theory is just Secondary HJ theory

Locally, conditions $T^*(\omega) = T^*(H) = 0$ read

 $T = dS, \qquad \frac{\partial}{\partial q} \left(H(q, \partial S/\partial q) \right) = 0$

This is not the whole story: complete solutions, integrability, ...

The Hamilton-Jacobi (HJ) formalism is a cornerstone of the calculus of variations and the theory of Hamiltonian systems. Moreover, it is a first, important step through the quantization of a mechanical system.

The aim of the talk is twofold:

- It o present a higher derivative, field theoretic analogue of HJ theory
- to show that, when framed within Secondary Calculus, HJ field theory is just Secondary HJ theory

イロト 不得 トイヨト イヨト 二日

Locally, conditions $T^*(\omega) = T^*(H) = 0$ read

 $T = dS, \qquad \frac{\partial}{\partial q} \left(H(q, \partial S/\partial q) \right) = 0$

This is not the whole story: complete solutions, integrability, ...

The Hamilton-Jacobi (HJ) formalism is a cornerstone of the calculus of variations and the theory of Hamiltonian systems. Moreover, it is a first, important step through the quantization of a mechanical system.

The aim of the talk is twofold:

- It o present a higher derivative, field theoretic analogue of HJ theory
- to show that, when framed within Secondary Calculus, HJ field theory is just Secondary HJ theory

Locally, conditions $T^*(\omega) = T^*(H) = 0$ read

 $T = dS, \qquad \frac{\partial}{\partial q} \left(H(q, \partial S/\partial q) \right) = 0$

This is not the whole story: complete solutions, integrability, ...

The Hamilton-Jacobi (HJ) formalism is a cornerstone of the calculus of variations and the theory of Hamiltonian systems. Moreover, it is a first, important step through the quantization of a mechanical system.

The aim of the talk is twofold:

() to present a higher derivative, field theoretic analogue of HJ theory

to show that, when framed within Secondary Calculus, HJ field theory is just Secondary HJ theory

イロト 不得 とくほと くほとう ほ

Locally, conditions $T^*(\omega) = T^*(H) = 0$ read

 $T = dS, \qquad \frac{\partial}{\partial q} \left(H(q, \partial S/\partial q) \right) = 0$

This is not the whole story: complete solutions, integrability, ...

The Hamilton-Jacobi (HJ) formalism is a cornerstone of the calculus of variations and the theory of Hamiltonian systems. Moreover, it is a first, important step through the quantization of a mechanical system.

The aim of the talk is twofold:

- **()** to present a higher derivative, field theoretic analogue of HJ theory
- O to show that, when framed within Secondary Calculus, HJ field theory is just Secondary HJ theory

イロト 不得 とくほと くほとう ほ

Outline

1 Hamiltonian Field Theory

Pamilton-Jacobi Field Theory

3 Secondary Hamilton-Jacobi Theorem

<ロ> <同> <同> < 回> < 回>

Outline

econdary Hamilton-Jacobi Theory

イロト イポト イヨト イヨト

Outline

2 Hamilton-Jacobi Field Theory

Secondary Hamilton-Jacobi Theory

(人間) システン イラン

Multimomentum Bundles Hamiltonian Formalism

Outline

2 Hamilton-Jacobi Field Theory

3 Secondary Hamilton-Jacobi Theory

イロト イポト イヨト イヨト

Multimomentum Bundles Hamiltonian Formalism

Multimomentum Bundles

 $\alpha: P \to M$: a fiber bundle $\Longrightarrow J^1 \to P$: 1st jet bundle \star

Definition (extended multimomentum bundle $\mathscr{M}lpha o \mathsf{P})$

Sections of $\mathscr{M} \alpha \to P =$ affine bundle morphisms $J^1 \to P \times_M \wedge^n T^*M$

Definition (multimomentum bundle $J^{\dagger} \alpha \rightarrow P$)

Sections of $J^{\dagger} \alpha \rightarrow P =$ linear parts of sections of $\mathcal{M} \alpha \rightarrow P$.

Main Properties

- coordinates \star (x^i, y^a) on $P \Longrightarrow$ coordinates $(x^i, y^a, p_a^i, p) \star$ on $\mathscr{M}\alpha$
- $\mathscr{M} \alpha \to J^{\dagger} \alpha$ is a 1-dim. affine bundle with no distinguished section \star
- \exists a tautological *n*-form on $\mathscr{M}\alpha$: $\Theta_0 = p_a^i dy^a \wedge d^{n-1}x_i pd^nx \star$

Multimomentum Bundles Hamiltonian Formalism

Multimomentum Bundles

 $\alpha: P \rightarrow M$: a fiber bundle $\Longrightarrow J^1 \rightarrow P$: 1st jet bundle \star

Definition (extended multimomentum bundle $\mathcal{M}\alpha \to P$)

Sections of $\mathscr{M} \alpha \to P$ = affine bundle morphisms $J^1 \to P \times_M \wedge^n T^*M$

Definition (multimomentum bundle $J^{\dagger} \alpha \rightarrow P$)

Sections of $J^{\dagger} \alpha \rightarrow P =$ linear parts of sections of $\mathcal{M} \alpha \rightarrow P$.

Main Properties

- coordinates \star (x^i, y^a) on $P \implies$ coordinates (x^i, y^a, p^i_a, p) \star on $\mathscr{M}\alpha$
- $\mathscr{M} \alpha \to J^{\dagger} \alpha$ is a 1-dim. affine bundle with no distinguished section \star
- \exists a tautological *n*-form on $\mathcal{M}\alpha$: $\Theta_0 = p_a^i dy^a \wedge d^{n-1}x_i pd^nx \star$

・ロン ・四 ・ ・ ヨ ・ ・ ヨ

Multimomentum Bundles Hamiltonian Formalism

Multimomentum Bundles

 $\alpha: P \rightarrow M$: a fiber bundle $\Longrightarrow J^1 \rightarrow P$: 1st jet bundle \star

Definition (extended multimomentum bundle $\mathcal{M}\alpha \rightarrow P$)

Sections of $\mathscr{M} \alpha \to P$ = affine bundle morphisms $J^1 \to P \times_M \wedge^n T^*M$

Definition (multimomentum bundle $J^{\dagger} \alpha \rightarrow P$)

Sections of $J^{\dagger} \alpha \rightarrow P =$ linear parts of sections of $\mathcal{M} \alpha \rightarrow P$.

Main Properties

- coordinates \star (x^i, y^a) on $P \implies$ coordinates (x^i, y^a, p^i_a, p) \star on $\mathscr{M}\alpha$
- $\mathscr{M} \alpha \to J^{\dagger} \alpha$ is a 1-dim. affine bundle with no distinguished section \star
- \exists a tautological *n*-form on $\mathscr{M}\alpha$: $\Theta_0 = p_a^i dy^a \wedge d^{n-1}x_i pd^nx \star$

Multimomentum Bundles Hamiltonian Formalism

Multimomentum Bundles

 $\alpha: P \rightarrow M$: a fiber bundle $\Longrightarrow J^1 \rightarrow P$: 1st jet bundle \star

Definition (extended multimomentum bundle $\mathcal{M}\alpha \to P$)

Sections of $\mathscr{M} \alpha \to P$ = affine bundle morphisms $J^1 \to P \times_M \wedge^n T^*M$

Definition (multimomentum bundle $J^{\dagger} \alpha \rightarrow P$)

Sections of $J^{\dagger} \alpha \rightarrow P =$ linear parts of sections of $\mathcal{M} \alpha \rightarrow P$.

Main Properties

- coordinates \star (x^i, y^a) on $P \implies$ coordinates (x^i, y^a, p_a^i, p) \star on $\mathcal{M}\alpha$
- $\mathscr{M} \alpha \to J^{\dagger} \alpha$ is a 1-dim. affine bundle with no distinguished section \star
- \exists a tautological *n*-form on $\mathcal{M}\alpha$: $\Theta_0 = p_a^i dy^a \wedge d^{n-1}x_i pd^nx \star$

Multimomentum Bundles Hamiltonian Formalism

Hamiltonian Formalism: Ingredients

• $\pi: E \to M$: a fiber bundle $\implies \pi_k: J^k \to M$: *k*th jet bundle,

coordinates (x^i, u) on $P \implies$ coordinates (x^i, u_l) on J^k .

• $S = \int \mathscr{L}$: a (k+1)th derivative Lagrangian field theory on π :

 $\mathscr{L} = L[x, u]d^n x, \quad L[x, u] \in C^{\infty}(J^{k+1}).$

• Θ_0 : the tautological *n*-form on $\mathcal{M}\pi_k$

 $\Theta_0 = p^{I,i} du_I \wedge d^{n-1} x_i - p d^n x$

Assumption: $(\partial^2 L[x, u]/\partial u_{k+1}\partial u_{k+1})$ is non-degenerate.

・ロン ・回 と ・ ヨン ・ ヨ

Multimomentum Bundles Hamiltonian Formalism

Hamiltonian Formalism: Ingredients

• $\pi: E \to M$: a fiber bundle $\implies \pi_k: J^k \to M$: kth jet bundle,

coordinates (x^i, u) on $P \implies$ coordinates (x^i, u_l) on J^k .

• $S = \int \mathscr{L}$: a (k+1)th derivative Lagrangian field theory on π :

 $\mathscr{L} = L[x, u]d^n x, \quad L[x, u] \in C^{\infty}(J^{k+1}).$

• Θ_0 : the tautological *n*-form on $\mathcal{M}\pi_k$

 $\Theta_0 = p^{I,i} du_I \wedge d^{n-1} x_i - p d^n x$

Assumption: $(\partial^2 L[x, u]/\partial u_{k+1}\partial u_{k+1})$ is non-degenerate.

Multimomentum Bundles Hamiltonian Formalism

Hamiltonian Formalism: Ingredients

• $\pi: E \to M$: a fiber bundle $\implies \pi_k: J^k \to M$: kth jet bundle,

coordinates (x^i, u) on $P \implies$ coordinates (x^i, u_l) on J^k .

• $S = \int \mathscr{L}$: a (k+1)th derivative Lagrangian field theory on π :

 $\mathscr{L} = L[x, u]d^n x, \quad L[x, u] \in C^{\infty}(J^{k+1}).$

• Θ_0 : the tautological *n*-form on $\mathcal{M}\pi_k$

$$\Theta_0 = p^{I.i} du_I \wedge d^{n-1} x_i - p d^n x$$

Assumption: $(\partial^2 L[x, u] / \partial u_{k+1} \partial u_{k+1})$ is non-degenerate.

Multimomentum Bundles Hamiltonian Formalism

Hamiltonian Formalism: Ingredients

• $\pi: E \to M$: a fiber bundle $\implies \pi_k: J^k \to M$: kth jet bundle,

coordinates (x^i, u) on $P \implies$ coordinates (x^i, u_l) on J^k .

• $S = \int \mathscr{L}$: a (k+1)th derivative Lagrangian field theory on π :

 $\mathscr{L} = L[x, u]d^n x, \quad L[x, u] \in C^{\infty}(J^{k+1}).$

• Θ_0 : the tautological *n*-form on $\mathcal{M}\pi_k$

$$\Theta_0 = p^{I.i} du_I \wedge d^{n-1} x_i - p d^n x$$

Assumption: $(\partial^2 L[x, u] / \partial u_{k+1} \partial u_{k+1})$ is non-degenerate. \star

Multimomentum Bundles Hamiltonian Formalism

Hamiltonian Formalism: Main Constructions and Results

• Θ : a (dynamical) Hamiltonian *n*-form on $J^{\dagger}\pi_k$:

$$\Theta = p^{l.i} du_l \wedge d^{n-1} x_i - H[x, u, p] d^n x,$$

$$H[x, u, p] = p^{l.i} u_{li} - L[x, u] |u_{k+1} = u_{k+1}[x, p, u_1, \dots, u_k]$$

• Hamilton-like equations

$$i_{\dot{\sigma}} d\Theta|_{\sigma} = 0, \qquad \sigma: M o J^{\dagger} \pi_k$$

locally,

$$(dDE) \qquad \left\{ \begin{array}{l} p^{l,i}{}_{,i} = -\frac{\partial H}{\partial u_l} \\ u_{l,i} = \frac{\partial H}{\partial p^{l,i}} \end{array} \right. \star$$

Theorem: the dDE cover the ELE via $J^{\dagger}\pi_k o E$

(人間) システン イラン

Multimomentum Bundles Hamiltonian Formalism

Hamiltonian Formalism: Main Constructions and Results

• Θ : a (dynamical) Hamiltonian *n*-form on $J^{\dagger}\pi_k$:

$$\Theta = p^{l.i} du_l \wedge d^{n-1} x_i - H[x, u, p] d^n x,$$

$$H[x, u, p] = p^{l.i} u_{li} - L[x, u] |u_{k+1} = u_{k+1}[x, p, u_1, \dots, u_k]$$

Hamilton-like equations

$$i_{\dot{\sigma}} d\Theta|_{\sigma} = 0, \qquad \sigma: M o J^{\dagger} \pi_k$$

locally,

$$(dDE) \qquad \begin{cases} p^{I,i}, i = -\frac{\partial H}{\partial u_{I}} \\ u_{I,i} = \frac{\partial H}{\partial p^{I,i}} \end{cases} \star$$

Theorem: the dDE cover the ELE via $J^{\dagger}\pi_k
ightarrow E$

(人間) システン イラン

Multimomentum Bundles Hamiltonian Formalism

Hamiltonian Formalism: Main Constructions and Results

• Θ : a (dynamical) Hamiltonian *n*-form on $J^{\dagger}\pi_k$:

$$\Theta = p^{l.i} du_l \wedge d^{n-1} x_i - H[x, u, p] d^n x,$$

$$H[x, u, p] = p^{l.i} u_{li} - L[x, u] |u_{k+1} = u_{k+1}[x, p, u_1, \dots, u_k]$$

Hamilton-like equations

$$egin{array}{lll} |_{\sigma} = 0, & \sigma: M
ightarrow J^{\dagger} \pi_k \end{array}$$

locally,

$$(dDE) \qquad \begin{cases} p^{l.i}, i = -\frac{\partial H}{\partial u_l} \\ u_{l,i} = \frac{\partial H}{\partial p^{l.i}} \end{cases} *$$

Theorem: the dDE cover the ELE via $J^{\dagger}\pi_k \rightarrow E$

- 4 回 ト - 4 回 ト

Multimomentum Bundles Hamiltonian Formalism

Hamiltonian Formalism: Mechanics vs Field Theory

Mechanics	Field Theory
$TQ imes \mathbb{R} o Q imes \mathbb{R}$	$J^{k+1} ightarrow J^k$
t, q, \dot{q}	x ⁱ , u _l
$\mathcal{T}^*Q imes\mathbb{R} o Q imes\mathbb{R}$	$J^{\dagger}\pi_k ightarrow J^k$
t,q,p	$x^i, u_I, p^{I,i}$
pdq — Hdt \star	Θ
$i_{\dot\sigma}\omega _\sigma-dH _\sigma=0$	$i_{\dot{\sigma}}d\Theta _{\sigma}=0$

Hamilton-Jacobi Theorem An Example: The Biharmonic Equation

Outline

2 Hamilton-Jacobi Field Theory

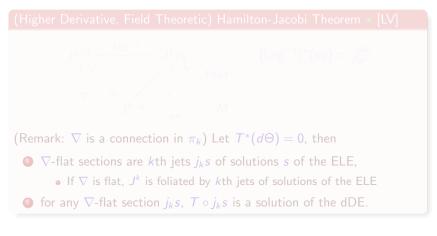
3 Secondary Hamilton-Jacobi Theory

イロト イポト イヨト イヨト

Hamilton-Jacobi Theorem An Example: The Biharmonic Equation

Hamilton-Jacobi Theorem

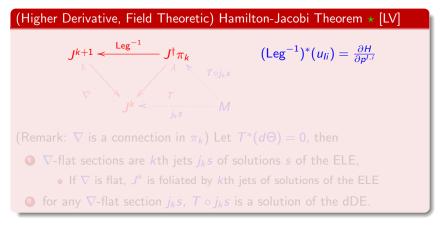
 (π, \mathbf{S}) : a regular Lagrangian field theory, Θ : the Hamiltonian *n*-form



Hamilton-Jacobi Theorem An Example: The Biharmonic Equation

Hamilton-Jacobi Theorem

 (π, \mathbf{S}) : a regular Lagrangian field theory, Θ : the Hamiltonian *n*-form



Hamilton-Jacobi Theorem An Example: The Biharmonic Equation

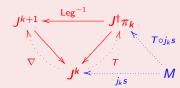
 $(\operatorname{Leg}^{-1})^*(u_{li}) = \frac{\partial H}{\partial n^{l,i}}$

イロト イポト イヨト イヨト

Hamilton-Jacobi Theorem

 (π, \mathbf{S}) : a regular Lagrangian field theory, Θ : the Hamiltonian *n*-form

(Higher Derivative, Field Theoretic) Hamilton-Jacobi Theorem * [LV]



(Remark: ∇ is a connection in π_k) Let $T^*(d\Theta) = 0$, then

• ∇ -flat sections are *k*th jets *j_ks* of solutions *s* of the ELE,

If abla is flat, J^k is foliated by kth jets of solutions of the ELE

(a) for any ∇ -flat section $j_k s$, $T \circ j_k s$ is a solution of the dDE.

Hamilton-Jacobi Theorem An Example: The Biharmonic Equation

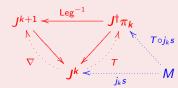
 $(\operatorname{Leg}^{-1})^*(u_{li}) = \frac{\partial H}{\partial n^{l,i}}$

イロト イポト イヨト イヨト

Hamilton-Jacobi Theorem

 (π, \mathbf{S}) : a regular Lagrangian field theory, Θ : the Hamiltonian *n*-form

(Higher Derivative, Field Theoretic) Hamilton-Jacobi Theorem * [LV]



(Remark: ∇ is a connection in π_k) Let $T^*(d\Theta) = 0$, then

- ∇ -flat sections are *k*th jets *j_ks* of solutions *s* of the ELE,
 - If ∇ is flat, J^k is foliated by kth jets of solutions of the ELE

② for any ∇-flat section $j_k s$, $T \circ j_k s$ is a solution of the dDE.

Hamilton-Jacobi Theorem An Example: The Biharmonic Equation

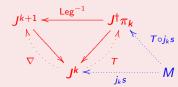
 $(\operatorname{Leg}^{-1})^*(u_{li}) = \frac{\partial H}{\partial n^{l,i}}$

イロト イポト イヨト イヨト

Hamilton-Jacobi Theorem

 (π, \mathbf{S}) : a regular Lagrangian field theory, Θ : the Hamiltonian *n*-form

(Higher Derivative, Field Theoretic) Hamilton-Jacobi Theorem * [LV]



(Remark: ∇ is a connection in π_k) Let $T^*(d\Theta) = 0$, then

- **9** ∇ -flat sections are *k*th jets *j_ks* of solutions *s* of the ELE,
 - If ∇ is flat, J^k is foliated by kth jets of solutions of the ELE
- **2** for any ∇ -flat section $j_k s$, $T \circ j_k s$ is a solution of the dDE.

Hamilton-Jacobi Theorem An Example: The Biharmonic Equation

An Example: the Biharmonic Equation

Locally the (field theoretic) Hamilton-Jacobi equation $T^*(d\Theta) = 0$ reads

 $T: p^{I,i} = \frac{\partial}{\partial u_I} S^i, \qquad \frac{\partial}{\partial u_I} \left(\frac{\partial}{\partial x^i} S^i + H[x, u, \partial S/\partial u] \right) = 0.$

A Toy Example

The biharmonic equation \star

 $\nabla^4 u = 0$

is EL with second derivative action: $S = \int \frac{1}{2} u_{ij} u^{ij} d^n x$.

Remark: $p^{ij} = u^{ij}$ and $H = p^i u_i + \frac{1}{2} p^{ij} p_{ij}$. dDE read

$$p^{i}, i = 0$$

 $p^{ij}, i = p^{j}$
 $u, i = u_{i}$
 $u_{j}, i = p_{ij}$

which covers $\nabla^4 u = 0$.

Hamilton-Jacobi Theorem An Example: The Biharmonic Equation

An Example: the Biharmonic Equation

Locally the (field theoretic) Hamilton-Jacobi equation $T^*(d\Theta) = 0$ reads

 $T: p^{l,i} = \frac{\partial}{\partial u_l} S^i, \qquad \frac{\partial}{\partial u_l} \left(\frac{\partial}{\partial x^i} S^i + H[x, u, \partial S/\partial u] \right) = 0.$

A Toy Example

The biharmonic equation \star

 $\nabla^4 u = 0$

is EL with second derivative action: $\mathbf{S} = \int \frac{1}{2} u_{ij} u^{ij} d^n x$.

Remark: $p^{ij} = u^{ij}$ and $H = p^i u_i + \frac{1}{2} p^{ij} p_{ij}$. dDE read

$$p^{i}, i = 0$$

$$p^{ij}, i = p^{j}$$

$$u, i = u_{i}$$

$$u_{j}, i = p_{ij}$$

which covers $\nabla^4 u = 0$.

Hamilton-Jacobi Theorem An Example: The Biharmonic Equation

An Example: the Biharmonic Equation

Locally the (field theoretic) Hamilton-Jacobi equation $T^*(d\Theta) = 0$ reads

 $T: p^{l,i} = \frac{\partial}{\partial u_l} S^i, \qquad \frac{\partial}{\partial u_l} \left(\frac{\partial}{\partial x^i} S^i + H[x, u, \partial S/\partial u] \right) = 0.$

A Toy Example

The biharmonic equation \star

 $\nabla^4 u = 0$

is EL with second derivative action: $\mathbf{S} = \int \frac{1}{2} u_{ij} u^{ij} d^n x$.

Remark: $p^{ij} = u^{ij}$ and $H = p^i u_i + \frac{1}{2} p^{ij} p_{ij}$. dDE read

$p^{i}, _{i} = 0$
$p^{ij}, i = p^j$
$u, i = u_i$
$u_j, i = p_{ij}$

which covers $\nabla^4 u = 0$.

Hamilton-Jacobi Theorem An Example: The Biharmonic Equation

An Example: the Biharmonic Equation

The HJE reads

$\partial_i S^i + u_i \frac{\partial}{\partial u} S^i + \frac{1}{4} (\frac{\partial}{\partial u^i} S_j + \frac{\partial}{\partial u^i} S_i) \frac{\partial}{\partial u_i} S^j = f(x).$

If $\phi = \phi(x)$ is a biharmonic function, then

$$S^{i} := u^{j}\phi_{,j}^{i} - u\phi_{,j}^{ji} + G^{i}(x)$$

is a solution of the HJE determining the connection $\nabla : J^1 \to J^2$ given by $\nabla^*(u_{ij}) = \phi_{,ij}$. ∇ is flat with flat sections (foliating J^1) being 1st jets of the biharmonic functions:

 $u=\phi(x)+A_ix^i+B.$

イロン 不同 とくほう イヨン

An Example: the Biharmonic Equation

The HJE reads

$$\partial_i S^i + u_i \frac{\partial}{\partial u} S^i + \frac{1}{4} (\frac{\partial}{\partial u^i} S_j + \frac{\partial}{\partial u^i} S_i) \frac{\partial}{\partial u_i} S^j = f(x).$$

If $\phi = \phi(x)$ is a biharmonic function, then

$$S^{i} := u^{j} \phi_{,j}^{i} - u \phi_{,j}^{ji} + G^{i}(x)$$

is a solution of the HJE determining the connection $\nabla : J^1 \to J^2$ given by $\nabla^*(u_{ij}) = \phi_{,ij}$. ∇ is flat with flat sections (foliating J^1) being 1st jets of the biharmonic functions:

 $u=\phi(x)+A_ix^i+B.$

-

An Example: the Biharmonic Equation

The HJE reads

$$\partial_i S^i + u_i \frac{\partial}{\partial u} S^i + \frac{1}{4} (\frac{\partial}{\partial u^i} S_j + \frac{\partial}{\partial u^i} S_i) \frac{\partial}{\partial u_i} S^j = f(x).$$

If $\phi = \phi(x)$ is a biharmonic function, then

$$S^{i} := u^{j} \phi_{,j}^{i} - u \phi_{,j}^{ji} + G^{i}(x)$$

is a solution of the HJE determining the connection $\nabla : J^1 \to J^2$ given by $\nabla^*(u_{ij}) = \phi_{,ij}$. ∇ is flat with flat sections (foliating J^1) being 1st jets of the biharmonic functions:

 $u=\phi(x)+A_ix^i+B.$

-

Covariant Phase Space

Outline

(2) Hamilton-Jacobi Field Theory

Secondary Hamilton-Jacobi Theory

イロト イポト イヨト イヨト

э

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Secondary Calculus: a Sketch

$\mathcal{E} \subset J^r$ a PDE $\Longrightarrow \mathscr{E} \subset J^{\infty}$ its ∞ th prolongation.

 $\mathscr E$ is a diffiety: i.e., it is endowed with an involutive distribution

 $\mathscr{C} = \langle \dots, D_i, \dots \rangle, \quad D_i = \frac{\partial}{\partial x^i} + u_{li} \frac{\partial}{\partial u_l}.$

Solutions of \mathcal{E} are \star *n*-dimensional integral manifolds of \mathscr{C} .

Secondary calculus is a homological formalization of the idea of differential calculus on the "manifold" of solutions of \mathcal{E}

Example: secondary vector fields are higher symmetries of \mathcal{E}

more precisely, they are cohomologies of a suitable Spencer complex

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Secondary Calculus: a Sketch

 $\mathcal{E} \subset J^r$ a PDE $\Longrightarrow \mathscr{E} \subset J^\infty$ its ∞ th prolongation.

 $\ensuremath{\mathscr{E}}$ is a diffiety: i.e., it is endowed with an involutive distribution

 $\mathscr{C} = \langle \ldots, D_i, \ldots \rangle, \quad D_i = \frac{\partial}{\partial x^i} + u_{li} \frac{\partial}{\partial u_l}.$

Solutions of \mathcal{E} are \star *n*-dimensional integral manifolds of \mathscr{C} .

Secondary calculus is a homological formalization of the idea of differential calculus on the "manifold" of solutions of \mathcal{E}

Example: secondary vector fields are higher symmetries of \mathcal{E}

more precisely, they are cohomologies of a suitable Spencer complex

イロン 不同 とくほう イヨン

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Secondary Calculus: a Sketch

 $\mathcal{E} \subset J^r$ a PDE $\Longrightarrow \mathscr{E} \subset J^{\infty}$ its ∞ th prolongation.

 \mathscr{E} is a diffiety: i.e., it is endowed with an involutive distribution

 $\mathscr{C} = \langle \dots, D_i, \dots \rangle, \quad D_i = \frac{\partial}{\partial x^i} + u_{Ii} \frac{\partial}{\partial u_I}.$

Solutions of \mathcal{E} are \star *n*-dimensional integral manifolds of \mathscr{C} .

Secondary calculus is a homological formalization of the idea of differential calculus on the "manifold" of solutions of \mathcal{E}

Example: secondary vector fields are higher symmetries of \mathcal{E}

more precisely, they are cohomologies of a suitable Spencer complex

イロン 不同 とくほう イヨン

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Secondary Calculus: a Sketch

 $\mathcal{E} \subset J^r$ a PDE $\Longrightarrow \mathscr{E} \subset J^\infty$ its ∞ th prolongation.

 $\ensuremath{\mathscr{E}}$ is a diffiety: i.e., it is endowed with an involutive distribution

 $\mathscr{C} = \langle \ldots, D_i, \ldots \rangle, \quad D_i = \frac{\partial}{\partial x^i} + u_{li} \frac{\partial}{\partial u_l}.$

Solutions of \mathcal{E} are \star *n*-dimensional integral manifolds of \mathscr{C} .

Secondary calculus is a homological formalization of the idea of differential calculus on the "manifold" of solutions of \mathcal{E}

Example: secondary vector fields are higher symmetries of \mathcal{E} \star

more precisely, they are cohomologies of a suitable Spencer complex

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Secondary Calculus: a Sketch

Example: secondary differential forms are cohomologies of

$$\cdots \to \mathscr{C}^{\bullet} \Lambda^{\bullet} \otimes \overline{\Lambda}^{q} \xrightarrow{\overline{d}} \mathscr{C}^{\bullet} \Lambda^{\bullet} \otimes \overline{\Lambda}^{q+1} \xrightarrow{\overline{d}} \cdots$$

- $\mathscr{C}^{\bullet}\Lambda^{\bullet}$: Cartan form algebra, generated by $\dots, du_{I} u_{Ii}dx^{i}, \dots$
- $\overline{\Lambda}^{\bullet}$: horizontal form algebra, generated by ..., dx^{i} ,...
- \overline{d} : horizontal de Rham differential, $\overline{d} = dx^i D_i$

Cartan calculus have a secondary analogue!

Remark: interpretation of secondary functions

- ullet secondary functions of degree n are actions constrained by $\mathcal E$
- ullet secondary functions of degree n-1 are conservation laws of ${\mathcal E}$
- • •

イロト イポト イヨト イヨト

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Secondary Calculus: a Sketch

Example: secondary differential forms are cohomologies of

$$\cdots \to \mathscr{C}^{\bullet} \Lambda^{\bullet} \otimes \overline{\Lambda}^{q} \xrightarrow{\overline{d}} \mathscr{C}^{\bullet} \Lambda^{\bullet} \otimes \overline{\Lambda}^{q+1} \xrightarrow{\overline{d}} \cdots$$

- $\mathscr{C}^{\bullet}\Lambda^{\bullet}$: Cartan form algebra, generated by ..., $du_{I} u_{Ii}dx^{i}$, ...
- $\overline{\Lambda}^{\bullet}$: horizontal form algebra, generated by ..., dx^{i} ,...
- \overline{d} : horizontal de Rham differential, $\overline{d} = dx^i D_i$

Cartan calculus have a secondary analogue!

Remark: interpretation of secondary functions • secondary functions of degree n are actions constrained by \mathcal{E} • secondary functions of degree n - 1 are conservation laws of \mathcal{E} • ···

イロト イポト イヨト イヨト

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Secondary Calculus: a Sketch

Example: secondary differential forms are cohomologies of

$$\cdots \to \mathscr{C}^{\bullet} \Lambda^{\bullet} \otimes \overline{\Lambda}^{q} \xrightarrow{\overline{d}} \mathscr{C}^{\bullet} \Lambda^{\bullet} \otimes \overline{\Lambda}^{q+1} \xrightarrow{\overline{d}} \cdots$$

- $\mathscr{C}^{\bullet}\Lambda^{\bullet}$: Cartan form algebra, generated by ..., $du_{I} u_{Ii}dx^{i}$, ...
- $\overline{\Lambda}^{\bullet}$: horizontal form algebra, generated by ..., dx^{i} ,...
- \overline{d} : horizontal de Rham differential, $\overline{d} = dx^i D_i$

Cartan calculus have a secondary analogue!

Remark: interpretation of secondary functions

- secondary functions of degree n are actions constrained by $\mathcal E$
- secondary functions of degree n-1 are conservation laws of ${\mathcal E}$
- o . . .

Covariant Phase Space

(π, \mathbf{S}) : a Lagrangian field theory, $\mathscr{E}_{\mathsf{EL}} \subset J^\infty$: the ∞ th prolong. of ELE

Theorem [Zuckerman]: \mathscr{E}_{EL} possesses a canonical (depending on **S** only)

secondary (pre)symplectic structure ω (in horizontal degree n-1),

Definition: $(\mathscr{E}_{EL}, \omega)$ is called the *covariant phase space* (CPS)

Main Properties

- X a Noether symmetry and f the corr. conserv. law \Rightarrow $i_{X}\omega = df$
- There is a "Poisson" bracket among conservation laws
- ker ω is made of gauge symmetries

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Covariant Phase Space

 (π, \mathbf{S}) : a Lagrangian field theory, $\mathscr{E}_{\mathsf{EL}} \subset J^\infty$: the ∞ th prolong. of ELE

Theorem [Zuckerman]: \mathcal{E}_{EL} possesses a canonical (depending on **S** only)

secondary (pre)symplectic structure ω (in horizontal degree n-1),

Definition: $(\mathscr{E}_{EL}, \omega)$ is called the *covariant phase space* (CPS)

Main Properties

- X a Noether symmetry and **f** the corr. conserv. law \Rightarrow $i_{\mathsf{X}}\omega$ = d**f**
- There is a "Poisson" bracket among conservation laws
- ker ω is made of gauge symmetries

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Covariant Phase Space

 (π, \mathbf{S}) : a Lagrangian field theory, $\mathscr{E}_{\mathsf{EL}} \subset J^\infty$: the ∞ th prolong. of ELE

Theorem [Zuckerman]: \mathcal{E}_{EL} possesses a canonical (depending on **S** only)

secondary (pre)symplectic structure ω (in horizontal degree n-1),

Definition: $(\mathscr{E}_{EL}, \omega)$ is called the *covariant phase space* (CPS)

Main Properties

- X a Noether symmetry and **f** the corr. conserv. law \Rightarrow $i_{\mathsf{X}}\omega$ = d**f**
- There is a "Poisson" bracket among conservation laws
- ker ω is made of gauge symmetries

イロン 不同 とくほう イヨン

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Covariant Phase Space

 (π, \mathbf{S}) : a Lagrangian field theory, $\mathscr{E}_{\mathsf{EL}} \subset J^\infty$: the ∞ th prolong. of ELE

Theorem [Zuckerman]: \mathcal{E}_{EL} possesses a canonical (depending on **S** only)

secondary (pre)symplectic structure ω (in horizontal degree n-1),

Definition: $(\mathscr{E}_{EL}, \omega)$ is called the *covariant phase space* (CPS)

Main Properties

- X a Noether symmetry and f the corr. conserv. law $\Rightarrow i_X \omega = df$
- There is a "Poisson" bracket among conservation laws
- ker ω is made of gauge symmetries

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Secondary Hamilton-Jacobi Problem

 (π, \mathbf{S}) : a (regular) (k + 1)th derivative Lagrangian field theory,

 $T^*(d\Theta) = 0$ (HJE)

э

im $\nabla \subset J^{k+1}$ may be interpreted as a PDE \mathcal{O} . Let $\mathcal{O} \subset J^{\infty}$ be its infinite prolongation. \mathcal{O} is finite-dimensional.

Theorem [LV]: if \exists a solution ${\mathcal T}$ of the HJE such that $abla = {\sf Leg}^{-1} \circ {\mathcal T}$

then \mathscr{O} is a (finite-dimensional) isotropic subdiffiety of $(\mathscr{E}_{\mathsf{EL}}, oldsymbol{\omega})$. \star

It is natural to formulate the HJ problem in secondary terms

The Secondary Hamilton Jacobi Problem: consists in searching for

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Secondary Hamilton-Jacobi Problem

 (π, \mathbf{S}) : a (regular) (k + 1)th derivative Lagrangian field theory,



 $T^*(d\Theta) = 0$ (HJE)

・ロト ・ 一 ・ ・ ヨ ・ ・ ヨ ・

э

im $\nabla \subset J^{k+1}$ may be interpreted as a PDE \mathcal{O} . Let $\mathcal{O} \subset J^{\infty}$ be its infinite prolongation. \mathcal{O} is finite-dimensional.

Theorem [LV]: if \exists a solution ${\mathcal T}$ of the HJE such that $abla = {\sf Leg}^{-1}\circ {\mathcal T}$

then \mathscr{O} is a (finite-dimensional) isotropic subdiffiety of $(\mathscr{E}_{\mathsf{EL}}, oldsymbol{\omega})$. \star

It is natural to formulate the HJ problem in secondary terms

The Secondary Hamilton Jacobi Problem: consists in searching for

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Secondary Hamilton-Jacobi Problem

 (π, \mathbf{S}) : a (regular) (k + 1)th derivative Lagrangian field theory,



 $T^*(d\Theta) = 0$ (HJE)

・ロト ・ 一 ・ ・ ヨ ・ ・ ヨ ・

э

im $\nabla \subset J^{k+1}$ may be interpreted as a PDE \mathcal{O} . Let $\mathcal{O} \subset J^{\infty}$ be its infinite prolongation. \mathcal{O} is finite-dimensional.

Theorem [LV]: if \exists a solution T of the HJE such that $\nabla = \text{Leg}^{-1} \circ T$

then \mathscr{O} is a (finite-dimensional) isotropic subdiffiety of $(\mathscr{E}_{\mathsf{EL}}, \omega)$. \star

It is natural to formulate the HJ problem in secondary terms

The Secondary Hamilton Jacobi Problem: consists in searching for

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Secondary Hamilton-Jacobi Problem

 (π, \mathbf{S}) : a (regular) (k + 1)th derivative Lagrangian field theory,



 $T^*(d\Theta) = 0$ (HJE)

ヘロン 人間 とくほと くほど

im $\nabla \subset J^{k+1}$ may be interpreted as a PDE \mathcal{O} . Let $\mathcal{O} \subset J^{\infty}$ be its infinite prolongation. \mathcal{O} is finite-dimensional.

Theorem [LV]: if \exists a solution T of the HJE such that $\nabla = \text{Leg}^{-1} \circ T$

then \mathscr{O} is a (finite-dimensional) isotropic subdiffiety of $(\mathscr{E}_{\mathsf{EL}}, \omega)$. \star

It is natural to formulate the HJ problem in secondary terms

The Secondary Hamilton Jacobi Problem: consists in searching for

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Conclusions and Perspectives

There exists a natural, geometric, higher derivative, field theoretic version of (part of) the standard HJ formalism in Hamiltonian mechanics.

A solution of the field theoretic HJE determines an isotropic subdiffiety of the CPS \implies secondary Hamilton-Jacobi theory of the CPS.

Open questions:

- Can one define the concept of Lagrangian subdiffiety of the CPS?
- If yes, how is it related to the field theoretic HJ theory?

イロト イポト イヨト イヨト

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Conclusions and Perspectives

There exists a natural, geometric, higher derivative, field theoretic version of (part of) the standard HJ formalism in Hamiltonian mechanics.

A solution of the field theoretic HJE determines an isotropic subdiffiety of the CPS \implies secondary Hamilton-Jacobi theory of the CPS.

Open questions:

• Can one define the concept of Lagrangian subdiffiety of the CPS?

• If yes, how is it related to the field theoretic HJ theory?

Conclusions and Perspectives

There exists a natural, geometric, higher derivative, field theoretic version of (part of) the standard HJ formalism in Hamiltonian mechanics.

A solution of the field theoretic HJE determines an isotropic subdiffiety of the CPS \implies secondary Hamilton-Jacobi theory of the CPS.

Open questions:

- Can one define the concept of Lagrangian subdiffiety of the CPS?
- If yes, how is it related to the field theoretic HJ theory?

< ロ > < 同 > < 三 > < 三 >

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Conclusions and Perspectives

HJ theory is a door through *quantization. (Complete) solutions* of the HJE determines approximate solutions of the Shroedinger equation. A complete solution maybe understood as a family of solutions parameterized by initial data.

Open question:

Can one define complete solutions of the field theoretic HJE?

Maybe via a diffiety of initial data \mathscr{N} ! In fact the CPS is somehow non-dynamical. Nonetheless, the ELE can be understood as secondary ODEs on \mathscr{N} .

Perspectives:

Secondary HJ theory (semi-classical quantization?) on \mathcal{N} .

Conclusions and Perspectives

HJ theory is a door through *quantization*. (Complete) solutions of the HJE determines approximate solutions of the Shroedinger equation. A complete solution maybe understood as a family of solutions parameterized by initial data.

Open question:

Can one define complete solutions of the field theoretic HJE?

Maybe via a diffiety of initial data \mathscr{N} ! In fact the CPS is somehow non-dynamical. Nonetheless, the ELE can be understood as secondary ODEs on \mathscr{N} .

Perspectives:

Secondary HJ theory (semi-classical quantization?) on \mathcal{N} .

Conclusions and Perspectives

HJ theory is a door through *quantization*. (Complete) solutions of the HJE determines approximate solutions of the Shroedinger equation. A complete solution maybe understood as a family of solutions parameterized by initial data.

Open question:

Can one define complete solutions of the field theoretic HJE?

Maybe via a diffiety of initial data $\mathscr{N}!$ In fact the CPS is somehow non-dynamical. Nonetheless, the ELE can be understood as secondary ODEs on $\mathscr{N}.$

Perspectives:

Secondary HJ theory (semi-classical quantization?) on \mathcal{N} .

Conclusions and Perspectives

HJ theory is a door through *quantization. (Complete) solutions* of the HJE determines approximate solutions of the Shroedinger equation. A complete solution maybe understood as a family of solutions parameterized by initial data.

Open question:

Can one define complete solutions of the field theoretic HJE?

Maybe via a diffiety of initial data $\mathscr{N}!$ In fact the CPS is somehow non-dynamical. Nonetheless, the ELE can be understood as secondary ODEs on $\mathscr{N}.$

Perspectives:

Secondary HJ theory (semi-classical quantization?) on $\mathscr{N}.$

Secondary Calculus Covariant Phase Space Secondary Hamilton-Jacobi Problem

Some Bibliographic References

- L. V., J. Geom. Phys. 59 (2009) 426.
- L. V., J. Geom. Phys. 60 (2010) 857.
- L. V., Int. J. Geom. Meth. Mod. Phys. 7 (2010) to appear in.

-