Dirac-Jacobi Bundles

Luca Vitagliano

University of Salerno, Italy

Workshop on Integrable Nonlinear Equations
Mikulov, October 18–24, 2015
Symplectic geometry has two natural extensions:
- presymplectic geometry,
- Poisson geometry.

Dirac geometry is a common extension of both!

Remark

<table>
<thead>
<tr>
<th>Mathematical Physics</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamiltonian mechanics (HM)</td>
<td>symplectic geometry</td>
</tr>
<tr>
<td>HM with constraints</td>
<td>presymplectic geometry</td>
</tr>
<tr>
<td>HM with symmetries</td>
<td>Poisson geometry</td>
</tr>
<tr>
<td>HM with both constr. and sym.</td>
<td>Dirac geometry</td>
</tr>
</tbody>
</table>

The arena for Dirac geometry is the *generalized tangent bundle*:

\[TM := TM \oplus T^*M. \]
Symplectic geometry has two natural extensions:
- *presymplectic geometry*,
- *Poisson geometry*.

Dirac geometry is a common extension of both!

Remark

<table>
<thead>
<tr>
<th>Mathematical Physics</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamiltonian mechanics (HM)</td>
<td>symplectic geometry</td>
</tr>
<tr>
<td>HM with constraints</td>
<td>presymplectic geometry</td>
</tr>
<tr>
<td>HM with symmetries</td>
<td>Poisson geometry</td>
</tr>
<tr>
<td>HM with both constr. and sym.</td>
<td>Dirac geometry</td>
</tr>
</tbody>
</table>

The arena for Dirac geometry is the *generalized tangent bundle*:

\[T\mathcal{M} := TM \oplus T^*\mathcal{M}. \]
Symplectic geometry has two natural extensions:
- *presymplectic geometry*,
- *Poisson geometry*.

Dirac geometry is a common extension of both!

<table>
<thead>
<tr>
<th>Mathematical Physics</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamiltonian mechanics (HM)</td>
<td>symplectic geometry</td>
</tr>
<tr>
<td>HM with constraints</td>
<td>presymplectic geometry</td>
</tr>
<tr>
<td>HM with symmetries</td>
<td>Poisson geometry</td>
</tr>
<tr>
<td>HM with both constr. and sym.</td>
<td>Dirac geometry</td>
</tr>
</tbody>
</table>

The arena for Dirac geometry is the *generalized tangent bundle*:

\[TM := TM \oplus T^*M. \]
Symplectic geometry has two natural extensions:

- presymplectic geometry,
- Poisson geometry.

Dirac geometry is a common extension of both!

Remark

<table>
<thead>
<tr>
<th>Mathematical Physics</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamiltonian mechanics (HM)</td>
<td>symplectic geometry</td>
</tr>
<tr>
<td>HM with constraints</td>
<td>presymplectic geometry</td>
</tr>
<tr>
<td>HM with symmetries</td>
<td>Poisson geometry</td>
</tr>
<tr>
<td>HM with both constr. and sym.</td>
<td>Dirac geometry</td>
</tr>
</tbody>
</table>

The arena for Dirac geometry is the *generalized tangent bundle*:

\[
\mathbb{T}M := TM \oplus T^*M.
\]
The main structures on $TM = TM \oplus T^*M$ are:
- the projection $\text{pr}_T : TM \to TM$,
- the symmetric bilinear form $\langle \langle - , - \rangle \rangle : TM \otimes TM \to \mathbb{R}_M$:
 \[
 \langle \langle (X, \sigma), (Y, \tau) \rangle \rangle := \tau(X) + \sigma(Y),
 \]
- the Dorfman bracket $\llbracket - , - \rrbracket : \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM)$:
 \[
 \llbracket (X, \sigma), (Y, \tau) \rrbracket := ([X, Y], \mathcal{L}_X \tau - i_Y d\sigma).
 \]

Definition

A Dirac manifold is a manifold $M + a$ Dirac structure, i.e. a maximally isotropic subbundle $\mathcal{L} \subset TM$ such that $\llbracket \Gamma(\mathcal{L}), \Gamma(\mathcal{L}) \rrbracket \subset \Gamma(\mathcal{L})$.

Examples

- graphs of presymplectic forms $\omega : TM \to T^*M$,
- graphs of Poisson tensors $\pi : T^*M \to TM$,
- $T\mathcal{F} \oplus T^0\mathcal{F} \subset TM$ with \mathcal{F} a foliation of M.

Dirac structures are basically the same as presymplectic foliations!
Dirac Manifolds

The main structures on $\mathcal{T}M = TM \oplus T^*M$ are:
- the projection $\text{pr}_T : \mathcal{T}M \to TM$,
- the symmetric bilinear form $\langle\langle -, - \rangle\rangle : \mathcal{T}M \otimes \mathcal{T}M \to \mathbb{R}_M$:
 \[
 \langle\langle (X, \sigma), (Y, \tau) \rangle\rangle := \tau(X) + \sigma(Y),
 \]
- the Dorfman bracket $\llbracket - , - \rrbracket : \Gamma(\mathcal{T}M) \times \Gamma(\mathcal{T}M) \to \Gamma(\mathcal{T}M)$:
 \[
 \llbracket (X, \sigma), (Y, \tau) \rrbracket := ([X, Y], \mathcal{L}_X \tau - i_Y d\sigma).
 \]

Definition

A Dirac manifold is a manifold $M +$ a Dirac structure, i.e. a maximally isotropic subbundle $\mathcal{L} \subset \mathcal{T}M$ such that $\llbracket \Gamma(\mathcal{L}), \Gamma(\mathcal{L}) \rrbracket \subset \Gamma(\mathcal{L})$.

Examples

- graphs of presymplectic forms $\omega : TM \to T^*M$,
- graphs of Poisson tensors $\pi : T^*M \to TM$,
- $TF \oplus T^0F \subset \mathcal{T}M$ with F a foliation of M.

Dirac structures are basically the same as presymplectic foliations!
The main structures on $TM = TM \oplus T^*M$ are:

- the projection $pr_T : TM \rightarrow TM$,
- the symmetric bilinear form $\langle\langle - , - \rangle\rangle : TM \otimes TM \rightarrow \mathbb{R}_M$:
 $$\langle\langle (X, \sigma), (Y, \tau) \rangle\rangle := \tau(X) + \sigma(Y),$$
- the Dorfman bracket $\llbracket - , - \rrbracket : \Gamma(TM) \times \Gamma(TM) \rightarrow \Gamma(TM)$:
 $$\llbracket (X, \sigma), (Y, \tau) \rrbracket := ([X, Y], \mathcal{L}_X \tau - i_Y d\sigma).$$

Definition

A *Dirac manifold* is a manifold M + a *Dirac structure*, i.e. a maximally isotropic subbundle $\mathcal{L} \subset TM$ such that $\llbracket \Gamma(\mathcal{L}), \Gamma(\mathcal{L}) \rrbracket \subset \Gamma(\mathcal{L})$.

Examples

- graphs of presymplectic forms $\omega : TM \rightarrow T^*M$,
- graphs of Poisson tensors $\pi : T^*M \rightarrow TM$,
- $TF \oplus T^0F \subset TM$ with F a foliation of M.

Dirac structures are basically the same as presymplectic foliations!
Dirac Manifolds

The main structures on $\mathbb{T}M = TM \oplus T^* M$ are:

- the projection $\text{pr}_T : \mathbb{T}M \to TM$,
- the symmetric bilinear form $\langle \langle - , - \rangle \rangle : \mathbb{T}M \otimes \mathbb{T}M \to \mathbb{R}_M$:
 $$\langle \langle (X, \sigma), (Y, \tau) \rangle \rangle := \tau(X) + \sigma(Y),$$
- the Dorfman bracket $\llbracket - , - \rrbracket : \Gamma(\mathbb{T}M) \times \Gamma(\mathbb{T}M) \to \Gamma(\mathbb{T}M)$:
 $$\llbracket (X, \sigma), (Y, \tau) \rrbracket := ([X, Y], \mathcal{L}_X \tau - i_Y d\sigma).$$

Definition

A Dirac manifold is a manifold M + a Dirac structure, i.e. a maximally isotropic subbundle $\mathcal{L} \subset \mathbb{T}M$ such that $\llbracket \Gamma(\mathcal{L}), \Gamma(\mathcal{L}) \rrbracket \subset \Gamma(\mathcal{L})$.

Examples

- graphs of presymplectic forms $\omega : \mathbb{T}M \to T^* M$,
- graphs of Poisson tensors $\pi : T^* M \to \mathbb{T}M$,
- $TF \oplus T^0 F \subset \mathbb{T}M$ with F a foliation of M.

Dirac structures are basically the same as presymplectic foliations!

Luca Vitagliano Dirac-Jacobi Bundles 3 / 14
The main structures on $TM = TM \oplus T^*M$ are:

- the projection $pr_T : TM \to TM$,
- the symmetric bilinear form $\langle\langle - , - \rangle\rangle : TM \otimes TM \to \mathbb{R}$:

$\langle\langle (X, \sigma), (Y, \tau) \rangle\rangle := \tau(X) + \sigma(Y)$,

- the Dorfman bracket $\llbracket - , - \rrbracket : \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM)$:

$\llbracket (X, \sigma), (Y, \tau) \rrbracket := ([X, Y], \mathcal{L}_X \tau - i_Y d\sigma)$.

Definition

A *Dirac manifold* is a manifold M + a *Dirac structure*, i.e. a maximally isotropic subbundle $\mathcal{L} \subset TM$ such that $\llbracket \Gamma(\mathcal{L}), \Gamma(\mathcal{L}) \rrbracket \subset \Gamma(\mathcal{L})$.

Examples

- graphs of presymplectic forms $\omega : TM \to T^*M$,
- graphs of Poisson tensors $\pi : T^*M \to TM$,
- $TF \oplus T^0F \subset TM$ with F a foliation of M.

Dirac structures are basically the same as presymplectic foliations!
Dirac Manifolds

The main structures on $\mathbb{T}M = TM \oplus T^*M$ are:

- the projection $\text{pr}_T : TM \to TM$,
- the symmetric bilinear form $\langle \langle -,- \rangle \rangle : \mathbb{T}M \otimes \mathbb{T}M \to \mathbb{R}_M$:
 $$\langle \langle (X,\sigma), (Y,\tau) \rangle \rangle := \tau(X) + \sigma(Y),$$
- the Dorfman bracket $\llbracket -,- \rrbracket : \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM)$:
 $$\llbracket (X,\sigma), (Y,\tau) \rrbracket := ([X,Y], \mathcal{L}_X\tau - i_Y d\sigma).$$

Definition

A Dirac manifold is a manifold M + a Dirac structure, i.e. a maximally isotropic subbundle $\mathcal{L} \subset \mathbb{T}M$ such that $\llbracket \Gamma(\mathcal{L}), \Gamma(\mathcal{L}) \rrbracket \subset \Gamma(\mathcal{L})$.

Examples

- graphs of presymplectic forms $\omega : TM \to T^*M$,
- graphs of Poisson tensors $\pi : T^*M \to TM$,
- $TF \oplus T^0F \subset TM$ with F a foliation of M.

Dirac structures are basically the same as presymplectic foliations!
Contact geometry has two natural extensions:

- *precontact geometry*,
- *Jacobi geometry*.

Definition

A *precontact manifold* is a manifold + an hyperplane distribution.

Definition

A *Jacobi manifold* is a manifold \(M \) + a *Jacobi bundle*, i.e. a line bundle \(L \to M \) equipped with a Lie bracket on sections

\[
J : \Gamma(L) \times \Gamma(L) \to \Gamma(L)
\]

which is a 1\(^{st}\) order DO in each entry.

Every contact manifold is both a precontact and a Jacobi manifold.

Remark

There is a common extension of both precontact and Jacobi geometry.
Precontact and Jacobi Geometry

Contact geometry has two natural extensions:

- *precontact geometry*,
- *Jacobi geometry*.

Definition

A precontact manifold is a manifold + an hyperplane distribution.

Definition

A Jacobi manifold is a manifold M + a *Jacobi bundle*, i.e. a line bundle $L \to M$ equipped with a Lie bracket on sections

$$J : \Gamma(L) \times \Gamma(L) \to \Gamma(L)$$

which is a 1^{st} order DO in each entry.

Every contact manifold is both a precontact and a Jacobi manifold.

Remark

There is a common extension of both precontact and Jacobi geometry.
Precontact and Jacobi Geometry

Contact geometry has two natural extensions:

- **precontact geometry,**
- **Jacobi geometry.**

Definition

A *precontact manifold* is a manifold + an hyperplane distribution.

Definition

A *Jacobi manifold* is a manifold M + a *Jacobi bundle*, i.e. a line bundle $L \to M$ equipped with a Lie bracket on sections

$$J : \Gamma(L) \times \Gamma(L) \to \Gamma(L)$$

which is a 1st order DO in each entry.

Every contact manifold is both a precontact and a Jacobi manifold.

Remark

There is a common extension of both precontact and Jacobi geometry.
Contact geometry has two natural extensions:

- *precontact geometry*,
- *Jacobi geometry*.

Definition

A *precontact manifold* is a manifold + an hyperplane distribution.

Definition

A *Jacobi manifold* is a manifold M + a *Jacobi bundle*, i.e. a line bundle $L \rightarrow M$ equipped with a Lie bracket on sections

$$J : \Gamma(L) \times \Gamma(L) \rightarrow \Gamma(L)$$

which is a 1st order DO in each entry.

Every contact manifold is both a precontact and a Jacobi manifold.

Remark

There is a common extension of both precontact and Jacobi geometry.
Precontact and Jacobi Geometry

Contact geometry has two natural extensions:

- *precontact geometry,*
- *Jacobi geometry.*

Definition

A *precontact manifold* is a manifold + an hyperplane distribution.

Definition

A *Jacobi manifold* is a manifold M + a *Jacobi bundle,* i.e. a line bundle $L \to M$ equipped with a Lie bracket on sections

$$J : \Gamma(L) \times \Gamma(L) \to \Gamma(L)$$

which is a 1^{st} order DO in each entry.

Every contact manifold is both a precontact and a Jacobi manifold.

Remark

There is a common extension of both precontact and Jacobi geometry.
Contact Geometry Revisited

A contact manifold is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \ker(\theta : TM \to L)$.

Definition

Sections of the Atiyah algebroid $DE \to M$ of a vector bundle $E \to M$ are \mathbb{R}-linear operators $\Delta : \Gamma(E) \to \Gamma(E)$ such that

$$\Delta(fe) = (\sigma\Delta)(f)e + f\Delta(e) \quad \text{for some } \sigma\Delta \in \mathfrak{X}(M).$$

Atiyah forms are cochains in $(\Omega^*_E := \Gamma(\bigwedge^\bullet(DE)^* \otimes E), d_{DE})$.

Proposition

Precontact structures H with $TM/H = L$ are in 1-1 correspondence with (nowhere vanishing) d_{DL}-closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DL}(\theta \circ \sigma)$. H is contact iff ω is non-degenerate.

Symplectic to Contact Dictionary Principle

A contact analogue of a construction in symplectic geometry can be defined replacing the tangent bundle with the Atiyah algebroid of $L \to M$.
A contact manifold is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \ker(\theta : TM \rightarrow L)$.

Definition

Sections of the Atiyah algebroid $DE \rightarrow M$ of a vector bundle $E \rightarrow M$ are \mathbb{R}-linear operators $\Delta : \Gamma(E) \rightarrow \Gamma(E)$ such that

$$\Delta(fe) = (\sigma\Delta)(f)e + f\Delta(e) \quad \text{for some } \sigma\Delta \in \mathfrak{x}(M).$$

Atiyah forms are cochains in $(\Omega^\bullet_E := \Gamma(\wedge^\bullet(DE)^* \otimes E), d_{DE})$.

Proposition

Precontact structures H with $TM/H = L$ are in 1-1 correspondence with (nowhere vanishing) d_{DL}-closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DL}(\theta \circ \sigma)$. H is contact iff ω in non-degenerate.

Symplectic to Contact Dictionary Principle

A contact analogue of a construction in symplectic geometry can be defined replacing the tangent bundle with the Atiyah algebroid of $L \rightarrow M$.
A contact manifold is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \ker(\theta : TM \to L)$.

Definition

Sections of the *Atiyah algebroid* $DE \to M$ of a vector bundle $E \to M$ are \mathbb{R}-linear operators $\Delta : \Gamma(E) \to \Gamma(E)$ such that

$$\Delta(fe) = (\sigma\Delta)(f)e + f\Delta(e)$$

for some $\sigma\Delta \in \mathfrak{X}(M)$.

Atiyah forms are cochains in $(\Omega_E^\bullet := \Gamma(\wedge^\bullet(DE)^* \otimes E), d_{DE})$.

Proposition

Precontact structures H with $TM/H = L$ are in 1-1 correspondence with (nowhere vanishing) d_{DL}-closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DL}(\theta \circ \sigma)$. H is contact iff ω is non-degenerate.

Symplectic to Contact Dictionary Principle

A contact analogue of a construction in symplectic geometry can be defined replacing the tangent bundle with the Atiyah algebroid of $L \to M$.
A contact manifold is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \ker(\theta : TM \to L)$.

Definition

Sections of the Atiyah algebroid $DE \to M$ of a vector bundle $E \to M$ are \mathbb{R}-linear operators $\Delta : \Gamma(E) \to \Gamma(E)$ such that

$$\Delta(fe) = (\sigma\Delta)(f)e + f\Delta(e)$$

for some $\sigma\Delta \in \mathfrak{X}(M)$.

Atiyah forms are cochains in $(\Omega^\bullet_E := \Gamma(\wedge^\bullet(DE)^* \otimes E), d_{DE})$.

Proposition

Precontact structures H with $TM/H = L$ are in 1-1 correspondence with (nowhere vanishing) d_{DL}-closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DL}(\theta \circ \sigma)$. H is contact iff ω in non-degenerate.

Symplectic to Contact Dictionary Principle

A contact analogue of a construction in symplectic geometry can be defined replacing the tangent bundle with the Atiyah algebroid of $L \to M$.
A contact manifold is a manifold $M + a$ maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \ker(\theta : TM \to L)$.

Definition

Sections of the Atiyah algebroid $DE \to M$ of a vector bundle $E \to M$ are \mathbb{R}-linear operators $\Delta : \Gamma(E) \to \Gamma(E)$ such that

$$\Delta(fe) = (\sigma\Delta)(f)e + f\Delta(e) \quad \text{for some } \sigma\Delta \in \mathfrak{X}(M).$$

Atiyah forms are cochains in $(\Omega^\bullet_E := \Gamma(\wedge^\bullet(DE)^* \otimes E), d_{DE})$.

Proposition

Precontact structures H with $TM/H = L$ are in 1-1 correspondence with (nowhere vanishing) d_{DL}-closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DL}(\theta \circ \sigma)$. H is contact iff ω is non-degenerate.

Symplectic to Contact Dictionary Principle

A contact analogue of a construction in symplectic geometry can be defined replacing the tangent bundle with the Atiyah algebroid of $L \to M$.
A contact manifold is a manifold $M + a$ maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \ker(\theta : TM \to L)$.

Definition

Sections of the Atiyah algebroid $DE \to M$ of a vector bundle $E \to M$ are \mathbb{R}-linear operators $\Delta : \Gamma(E) \to \Gamma(E)$ such that

$$\Delta(fe) = (\sigma\Delta)(f)e + f\Delta(e)$$

for some $\sigma\Delta \in \mathfrak{X}(M)$.

Atiyah forms are cochains in $(\Omega_E^\bullet := \Gamma(\wedge^\bullet(DE)^* \otimes E), d_{DE})$.

Proposition

Precontact structures H with $TM/H = L$ are in 1-1 correspondence with (nowhere vanishing) d_{DL}-closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DL}(\theta \circ \sigma)$. H is contact iff ω is non-degenerate.

Symplectic to Contact Dictionary Principle

A contact analogue of a construction in symplectic geometry can be defined replacing the tangent bundle with the Atiyah algebroid of $L \to M$.

Luca Vitagliano

Dirac-Jacobi Bundles
A contact manifold is a manifold M + a maximally non-integrable hyperplane distribution $H \subset TM$. Dually $H = \ker(\theta : TM \to L)$.

Definition

Sections of the Atiyah algebroid $DE \to M$ of a vector bundle $E \to M$ are \mathbb{R}-linear operators $\Delta : \Gamma(E) \to \Gamma(E)$ such that

$$\Delta(fe) = (\sigma \Delta)(f)e + f\Delta(e)$$

for some $\sigma \Delta \in \mathfrak{X}(M)$.

Atiyah forms are cochains in $(\Omega_E^\bullet := \Gamma(\wedge^\bullet(DE)^\ast \otimes E), d_{DE})$.

Proposition

Precontact structures H with $TM/H = L$ are in 1-1 correspondence with (nowhere vanishing) d_{DL}-closed Atiyah 2-forms on L. H corresponds to $\omega := d_{DL}(\theta \circ \sigma)$. H is contact iff ω is non-degenerate.

Symplectic to Contact Dictionary Principle

A contact analogue of a construction in symplectic geometry can be defined replacing the tangent bundle with the Atiyah algebroid of $L \to M$.
The arena for Dirac-Jacobi geometry is the \textit{omni-Lie algebroid}:

\[\mathcal{DL} := DL \oplus J^1L \quad \text{(notice that } J^1L = (DL)^* \otimes L). \]

The main structures on \(\mathcal{DL} \) are:

- the projection \(\text{pr}_D : \mathcal{DL} \to DL \),
- the symmetric bilinear form \(\langle\langle -,- \rangle\rangle : \mathcal{DL} \otimes \mathcal{DL} \to L : \langle\langle (\Delta,\phi), (\nabla,\psi) \rangle\rangle := \psi(\Delta) + \phi(\nabla). \)

- the \textit{Dorfman-Jacobi bracket} \([[-,-]] : \Gamma(\mathcal{DL}) \times \Gamma(\mathcal{DL}) \to \Gamma(\mathcal{DL}) : [[(\Delta,\phi), (\nabla,\psi)]] := ([\Delta,\nabla], \mathcal{L}_{\Delta} \psi - i_\nabla d_{DL}\phi). \)

\textbf{Definition}

A \textit{Dirac-Jacobi bundle} is a line bundle \(L \to M \) + a \textit{Dirac-Jacobi structure}, i.e. a maximally isotropic subbundle \(\mathcal{L} \subset \mathcal{DL} \) such that \([[\Gamma(\mathcal{L}), \Gamma(\mathcal{L})]] \subset \Gamma(\mathcal{L}). \)
The arena for Dirac-Jacobi geometry is the *omni-Lie algebroid*:

\[\mathbb{D}L := DL \oplus J^1L \quad \text{(notice that } J^1L = (DL)^* \otimes L). \]

The main structures on \(\mathbb{D}L \) are:

- the projection \(pr_D : \mathbb{D}L \to DL \),
- the symmetric bilinear form \(\langle\langle -, - \rangle\rangle : \mathbb{D}L \otimes \mathbb{D}L \to L : \langle\langle (\Delta, \phi), (\nabla, \psi) \rangle\rangle := \psi(\Delta) + \phi(\nabla) \).
- the *Dorfman-Jacobi bracket* \([-, -] : \Gamma(\mathbb{D}L) \times \Gamma(\mathbb{D}L) \to \Gamma(\mathbb{D}L) : \]

\[\llbracket (\Delta, \phi), (\nabla, \psi) \rrbracket := ([\Delta, \nabla], \mathcal{L}_\Delta \psi - i_\nabla d_{DL} \phi) . \]

Definition

A *Dirac-Jacobi bundle* is a line bundle \(L \to M \) + a *Dirac-Jacobi structure*, i.e. a maximally isotropic subbundle \(\mathcal{L} \subset \mathbb{D}L \) such that \(\llbracket \Gamma(\mathcal{L}), \Gamma(\mathcal{L}) \rrbracket \subset \Gamma(\mathcal{L}) \).
Dirac-Jacobi Line Bundles

The arena for Dirac-Jacobi geometry is the *omni-Lie algebroid*:

\[\mathbb{D}L := DL \oplus J^1L \quad \text{(notice that } J^1L = (DL)^* \otimes L). \]

The main structures on \(\mathbb{D}L \) are:

- the projection \(\text{pr}_D : \mathbb{D}L \to DL \),
- the symmetric bilinear form \(\langle\langle - , - \rangle \rangle : \mathbb{D}L \otimes \mathbb{D}L \to L : \langle\langle (\Delta, \phi), (\nabla, \psi) \rangle \rangle := \psi(\Delta) + \phi(\nabla) \).
- the *Dorfman-Jacobi bracket* \([- , -] : \Gamma(\mathbb{D}L) \times \Gamma(\mathbb{D}L) \to \Gamma(\mathbb{D}L) : \]

\[[(\Delta, \phi), (\nabla, \psi)] := ([\Delta, \nabla], \mathcal{L}_\Delta \psi - i_\nabla d_{DL} \phi). \]

Definition

A *Dirac-Jacobi bundle* is a line bundle \(L \to M \) + a Dirac-Jacobi structure, i.e. a maximally isotropic subbundle \(\mathcal{L} \subset \mathbb{D}L \) such that \([\Gamma(\mathcal{L}), \Gamma(\mathcal{L})] \subset \Gamma(\mathcal{L}) \).
The arena for Dirac-Jacobi geometry is the *omni-Lie algebroid*:

\[\mathcal{D}L := DL \oplus J^1L \]
(notice that \(J^1L = (DL)^* \otimes L \)).

The main structures on \(\mathcal{D}L \) are:

- the projection \(pr_D : \mathcal{D}L \to DL \),
- the symmetric bilinear form \(\langle\langle - , - \rangle\rangle : \mathcal{D}L \otimes \mathcal{D}L \to L \):
 \[\langle\langle (\Delta, \phi), (\nabla, \psi) \rangle\rangle := \psi(\Delta) + \phi(\nabla). \]
- the *Dorfman-Jacobi bracket* \(\llbracket - , - \rrbracket : \Gamma(\mathcal{D}L) \times \Gamma(\mathcal{D}L) \to \Gamma(\mathcal{D}L) \):
 \[\llbracket (\Delta, \phi), (\nabla, \psi) \rrbracket := ([\Delta, \nabla], \mathcal{L}_\Delta \psi - i_\nabla d_{DL} \phi). \]

Definition

A *Dirac-Jacobi bundle* is a line bundle \(L \to M \) + a Dirac-Jacobi structure, i.e. a maximally isotropic subbundle \(\mathcal{L} \subset \mathcal{D}L \) such that \(\llbracket \Gamma(\mathcal{L}), \Gamma(\mathcal{L}) \rrbracket \subset \Gamma(\mathcal{L}) \).
Dirac-Jacobi Line Bundles

The arena for Dirac-Jacobi geometry is the *omni-Lie algebroid*:

\[IDL := DL \oplus J^1L \] (notice that \(J^1L = (DL)^* \otimes L \)).

The main structures on \(IDL \) are:

- the projection \(pr_D : IDL \to DL \),
- the symmetric bilinear form \(\langle\langle -,-\rangle\rangle : IDL \otimes IDL \to L : \)
 \[\langle\langle (\Delta,\phi),(\nabla,\psi)\rangle\rangle := \psi(\Delta) + \phi(\nabla). \]
- the *Dorfman-Jacobi bracket* \(\lbrack -,- \rbrack : \Gamma(IDL) \times \Gamma(IDL) \to \Gamma(IDL) : \)
 \[\lbrack (\Delta,\phi),(\nabla,\psi) \rbrack := ([\Delta,\nabla],\mathcal{L}_\Delta \psi - i_\nabla d_{DL}\phi). \]

Definition

A *Dirac-Jacobi bundle* is a line bundle \(L \to M \) + a *Dirac-Jacobi structure*, i.e. a maximally isotropic subbundle \(\mathcal{L} \subset IDL \) such that \(\lbrack \Gamma(\mathcal{L}),\Gamma(\mathcal{L}) \rbrack \subset \Gamma(\mathcal{L}) \).
Characteristic Foliation

Examples

- graphs of Atiyah forms \(\omega : DL \to J^1L \) of precontact structures,
- graphs of Jacobi structures \(J : J^1L \to DL \),
- \(A \oplus A^0 \subset DL \) with \(A \) a subalgebroid of \(DL \).

- Jacobi structures are the same as lcs/contact foliations,
- \textit{Dirac-Jacobi structures are the same as lcps/precontact foliations.}

Remark

Let \(\mathcal{L} \subset DL \) be a Dirac-Jacobi structure

1. \(I_{\mathcal{L}} := \text{pr}_D(\mathcal{L}) \) is a (singular) subalgebroid of \(DL \),
2. \(\sigma(I_{\mathcal{L}}) = TF_{\mathcal{L}} \) for a (singular) characteristic foliation \(\mathcal{F}_{\mathcal{L}} \),
3. there is a 2-form \(\omega_{\mathcal{L}} : \wedge^2 I_{\mathcal{L}} \to L \) given by
 \[
 \omega_{\mathcal{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = \text{pr}_D(\Delta, \phi),
 \]
4. \(\omega_{\mathcal{L}} \) defines either a lcps or a precontact structure on each leaf of \(\mathcal{F}_{\mathcal{L}} \),
5. \(\mathcal{L} \) is completely determined by its lcps/precontact foliation.
Characteristic Foliation

Examples

- graphs of Atiyah forms $\omega : DL \to J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \to DL$,
- $A \oplus A^0 \subset DL$ with A a subalgebroid of DL.

- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathcal{L} \subset DL$ be a Dirac-Jacobi structure

1. $I_{\mathcal{L}} := \text{pr}_D(\mathcal{L})$ is a (singular) subalgebroid of DL,
2. $\sigma(I_{\mathcal{L}}) = T\mathcal{F}_{\mathcal{L}}$ for a (singular) characteristic foliation $\mathcal{F}_{\mathcal{L}}$,
3. there is a 2-form $\omega_{\mathcal{L}} : \wedge^2 I_{\mathcal{L}} \to L$ given by
 \[
 \omega_{\mathcal{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where} \ \Delta = \text{pr}_D(\Delta, \phi),
 \]
4. $\omega_{\mathcal{L}}$ defines either a lcps or a precontact structure on each leaf of $\mathcal{F}_{\mathcal{L}}$,
5. \mathcal{L} is completely determined by its lcps/precontact foliation.
Characteristic Foliation

Examples

- graphs of Atiyah forms $\omega : DL \to J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \to DL$,
- $A \oplus A^0 \subset DL$ with A a subalgebroid of DL.

- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathcal{L} \subset DL$ be a Dirac-Jacobi structure

1. $I_{\mathcal{L}} := \text{pr}_D(\mathcal{L})$ is a (singular) subalgebroid of DL,
2. $\sigma(I_{\mathcal{L}}) = TF_L$ for a (singular) characteristic foliation $F_{\mathcal{L}}$,
3. there is a 2-form $\omega_{\mathcal{L}} : \wedge^2I_{\mathcal{L}} \to L$ given by
 \[\omega_{\mathcal{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where} \ \Delta = \text{pr}_D(\Delta, \phi), \]
4. $\omega_{\mathcal{L}}$ defines either a lcps or a precontact structure on each leaf of $F_{\mathcal{L}}$,
5. \mathcal{L} is completely determined by its lcps/precontact foliation.
Characteristic Foliation

Examples

- graphs of Atiyah forms $\omega : DL \to J^1 L$ of precontact structures,
- graphs of Jacobi structures $J : J^1 L \to DL$,
- $A \oplus A^0 \subset DL$ with A a subalgebroid of DL.

- Jacobi structures are the same as lcs/contact foliations,
- \textit{Dirac-Jacobi structures are the same as lcps/precontact foliations.}

Remark

Let $\mathcal{L} \subset DL$ be a Dirac-Jacobi structure

1. $I_{\mathcal{L}} := \text{pr}_D(\mathcal{L})$ is a (singular) subalgebroid of DL,
2. $\sigma(I_{\mathcal{L}}) = TF_{\mathcal{L}}$ for a (singular) characteristic foliation $F_{\mathcal{L}}$,
3. there is a 2-form $\omega_{\mathcal{L}} : \wedge^2 I_{\mathcal{L}} \to L$ given by
 \[\omega_{\mathcal{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where} \quad \Delta = \text{pr}_D(\Delta, \phi), \]
4. $\omega_{\mathcal{L}}$ defines either a lcps or a precontact structure on each leaf of $F_{\mathcal{L}}$,
5. \mathcal{L} is completely determined by its lcps/precontact foliation.
Characteristic Foliation

Examples

- graphs of Atiyah forms $\omega : DL \to J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \to DL$,
- $A \oplus A^0 \subset IDL$ with A a subalgebroid of DL.

- Jacobi structures are the same as lcs/contact foliations,
- Dirac-Jacobi structures are the same as lcps/precontact foliations.

Remark

Let $\mathcal{L} \subset DL$ be a Dirac-Jacobi structure

1. $I_{\mathcal{L}} := pr_D(\mathcal{L})$ is a (singular) subalgebroid of DL,
2. $\sigma(I_{\mathcal{L}}) = T\mathcal{F}_{\mathcal{L}}$ for a (singular) characteristic foliation $\mathcal{F}_{\mathcal{L}}$,
3. there is a 2-form $\omega_{\mathcal{L}} : \wedge^2 I_{\mathcal{L}} \to L$ given by
 $$\omega_{\mathcal{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = pr_D(\Delta, \phi),$$
4. $\omega_{\mathcal{L}}$ defines either a lcps or a precontact structure on each leaf of $\mathcal{F}_{\mathcal{L}}$,
5. \mathcal{L} is completely determined by its lcps/precontact foliation.
Characteristic Foliation

Examples

- graphs of Atiyah forms $\omega : DL \to J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \to DL$,
- $A \oplus A^0 \subset DL$ with A a subalgebroid of DL.

- Jacobi structures are the same as lcs/contact foliations,
- **Dirac-Jacobi structures are the same as lcps/precontact foliations.**

Remark

Let $\mathcal{L} \subset DL$ be a Dirac-Jacobi structure

1. $I_\mathcal{L} := \text{pr}_D(\mathcal{L})$ is a (singular) subalgebroid of DL,
2. $\sigma(I_\mathcal{L}) = TF_\mathcal{L}$ for a (singular) characteristic foliation $F_\mathcal{L}$,
3. there is a 2-form $\omega_\mathcal{L} : \wedge^2 I_\mathcal{L} \to L$ given by
 $$\omega_\mathcal{L}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = \text{pr}_D(\Delta, \phi),$$
4. $\omega_\mathcal{L}$ defines either a lcps or a precontact structure on each leaf of $F_\mathcal{L}$,
5. \mathcal{L} is completely determined by its lcps/precontact foliation.
Characteristic Foliation

Examples

- Graphs of Atiyah forms $\omega : DL \to J^1L$ of precontact structures,
- Graphs of Jacobi structures $J : J^1L \to DL$,
- $A \oplus A^0 \subset DL$ with A a subalgebroid of DL.

- Jacobi structures are the same as lcs/contact foliations,
- *Dirac-Jacobi structures are the same as lcps/precontact foliations.*

Remark

Let $\mathcal{L} \subset DL$ be a Dirac-Jacobi structure

1. $I_{\mathcal{L}} := \text{pr}_D(\mathcal{L})$ is a (singular) subalgebroid of DL,
2. $\sigma(I_{\mathcal{L}}) = TF_{\mathcal{L}}$ for a (singular) characteristic foliation $F_{\mathcal{L}}$,
3. There is a 2-form $\omega_{\mathcal{L}} : \wedge^2 I_{\mathcal{L}} \to L$ given by
 \[\omega_{\mathcal{L}}(\Delta, \nabla) := \phi(\nabla), \quad \text{where} \quad \Delta = \text{pr}_D(\Delta, \phi), \]
4. $\omega_{\mathcal{L}}$ defines either a lcps or a precontact structure on each leaf of $F_{\mathcal{L}}$,
5. \mathcal{L} is completely determined by its lcps/precontact foliation.
Characteristic Foliation

Examples

- graphs of Atiyah forms $\omega : DL \to J^1 L$ of precontact structures,
- graphs of Jacobi structures $J : J^1 L \to DL$,
- $A \oplus A^0 \subset IDL$ with A a subalgebroid of DL.

- Jacobi structures are the same as lcs/contact foliations,
- *Dirac-Jacobi structures are the same as lcps/precontact foliations.*

Remark

Let $\mathcal{L} \subset IDL$ be a Dirac-Jacobi structure

1. $I_\mathcal{L} := \text{pr}_D(\mathcal{L})$ is a (singular) subalgebroid of DL,
2. $\sigma(I_\mathcal{L}) = T\mathcal{F}_\mathcal{L}$ for a (singular) characteristic foliation $\mathcal{F}_\mathcal{L}$,
3. there is a 2-form $\omega_\mathcal{L} : \wedge^2 I_\mathcal{L} \to L$ given by
 $$\omega_\mathcal{L}(\Delta, \nabla) := \phi(\nabla), \quad \text{where} \quad \Delta = \text{pr}_D(\Delta, \phi),$$
4. $\omega_\mathcal{L}$ defines either a lcps or a precontact structure on each leaf of $\mathcal{F}_\mathcal{L}$,
5. \mathcal{L} is completely determined by its lcps/precontact foliation.
Examples

- graphs of Atiyah forms $\omega : DL \to J^1L$ of precontact structures,
- graphs of Jacobi structures $J : J^1L \to DL$,
- $A \oplus A^0 \subset \mathcal{D}L$ with A a subalgebroid of DL.

- Jacobi structures are the same as lcs/contact foliations,
- *Dirac-Jacobi structures are the same as lcps/precontact foliations.*

Remark

Let $\mathcal{L} \subset \mathcal{D}L$ be a Dirac-Jacobi structure

1. $I_\mathcal{L} := \text{pr}_D(\mathcal{L})$ is a (singular) subalgebroid of DL,
2. $\sigma(I_\mathcal{L}) = T\mathcal{F}_\mathcal{L}$ for a (singular) characteristic foliation $\mathcal{F}_\mathcal{L}$,
3. there is a 2-form $\omega_\mathcal{L} : \wedge^2 I_\mathcal{L} \to L$ given by
 $$\omega_\mathcal{L}(\Delta, \nabla) := \phi(\nabla), \quad \text{where } \Delta = \text{pr}_D(\Delta, \phi),$$
4. $\omega_\mathcal{L}$ defines either a lcps or a precontact structure on each leaf of $\mathcal{F}_\mathcal{L}$,
5. \mathcal{L} is completely determined by its lcps/precontact foliation.
presymplectic manifolds “can” be reduced to symplectic manifolds,

Dirac manifolds “can” be reduced to Poisson manifolds,

precontact manifolds “can” be reduced to contact manifolds,

Dirac-Jacobi manifolds “can” be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

1. \(\ker \omega_L = \mathcal{L} \cap DL \) and it is a subalgebroid of \(DL \),
2. \(\sigma(\ker \omega_L) = TK_L \) for a null foliation \(K_L \).

Definition

A section \(\lambda \) of \(L \) is admissible if \((\Delta_\lambda, j^1 \lambda) \in \Gamma(\mathcal{L}) \) for some \(\Delta_\lambda \in \Gamma(DL) \).

Proposition

1. admissible sections \(\Gamma_{adm} \) form a Lie algebra under \(\{ \lambda, \mu \} := \Delta_\lambda(\mu) \),
2. a section is admissible iff it is “constant” along the leaves of \(K_L \),
3. there is a Jacobi bundle \((L_{\text{red}}, J_{\text{red}}) \) over \(M/K_L \) and \(\Gamma(L_{\text{red}}) = \Gamma_{adm} \).
presymplectic manifolds “can” be reduced to symplectic manifolds,

Dirac manifolds “can” be reduced to Poisson manifolds,

precontact manifolds “can” be reduced to contact manifolds,

Dirac-Jacobi manifolds “can” be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

1. \(\ker \omega_L = \mathcal{L} \cap DL \) and it is a subalgebroid of \(DL \),

2. \(\sigma(\ker \omega_L) = TK_L \) for a null foliation \(K_L \).

Definition

A section \(\lambda \) of \(L \) is admissible if \((\Delta_\lambda, j^1\lambda) \in \Gamma(\mathcal{L}) \) for some \(\Delta_\lambda \in \Gamma(DL) \).

Proposition

1. admissible sections \(\Gamma_{adm} \) form a Lie algebra under \(\{\lambda, \mu\} := \Delta_\lambda(\mu) \),

2. a section is admissible iff it is “constant” along the leaves of \(K_L \),

3. there is a Jacobi bundle \((L_{red}, J_{red}) \) over \(M/K_L \) and \(\Gamma(L_{red}) = \Gamma_{adm} \).
Jacobi Reduction

- presymplectic manifolds “can” be reduced to symplectic manifolds,
- Dirac manifolds “can” be reduced to Poisson manifolds,
- precontact manifolds “can” be reduced to contact manifolds,
- Dirac-Jacobi manifolds “can” be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

1. $\ker \omega_L = L \cap DL$ and it is a subalgebroid of DL,
2. $\sigma(\ker \omega_L) = TK_L$ for a null foliation K_L.

Definition

A section λ of L is admissible if $(\Delta_\lambda, j^1\lambda) \in \Gamma(L)$ for some $\Delta_\lambda \in \Gamma(DL)$.

Proposition

1. Admissible sections Γ_{adm} form a Lie algebra under $\{\lambda, \mu\} := \Delta_\lambda(\mu)$,
2. A section is admissible iff it is “constant” along the leaves of K_L,
3. There is a Jacobi bundle $(L_{\text{red}}, J_{\text{red}})$ over M/K_L and $\Gamma(L_{\text{red}}) = \Gamma_{\text{adm}}$.
Jacobi Reduction

- Presymplectic manifolds “can” be reduced to symplectic manifolds,
- Dirac manifolds “can” be reduced to Poisson manifolds,
- Precontact manifolds “can” be reduced to contact manifolds,
- Dirac-Jacobi manifolds “can” be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

1. \(\ker \omega_L = \mathcal{L} \cap DL \) and it is a subalgebroid of \(DL \),
2. \(\sigma(\ker \omega_L) = TK \mathcal{L} \) for a null foliation \(\mathcal{K}_\mathcal{L} \).

Definition

A section \(\lambda \) of \(L \) is admissible if \((\Delta_\lambda, j^1\lambda) \in \Gamma(\mathcal{L}) \) for some \(\Delta_\lambda \in \Gamma(DL) \).

Proposition

1. Admissible sections \(\Gamma_{adm} \) form a Lie algebra under \(\{\lambda, \mu\} := \Delta_\lambda(\mu) \),
2. A section is admissible iff it is “constant” along the leaves of \(\mathcal{K}_\mathcal{L} \),
3. There is a Jacobi bundle \((L_{red}, J_{red}) \) over \(M/\mathcal{K}_\mathcal{L} \) and \(\Gamma(L_{red}) = \Gamma_{adm} \).
Jacobi Reduction

- presymplectic manifolds “can” be reduced to symplectic manifolds,
- Dirac manifolds “can” be reduced to Poisson manifolds,
- precontact manifolds “can” be reduced to contact manifolds,
- Dirac-Jacobi manifolds “can” be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

1. \(\ker \omega \mathcal{L} = \mathcal{L} \cap DL \) and it is a subalgebroid of \(DL \),
2. \(\sigma(\ker \omega \mathcal{L}) = TK \mathcal{L} \) for a null foliation \(\mathcal{K} \mathcal{L} \).

Definition

A section \(\lambda \) of \(L \) is admissible if \((\Delta_\lambda, j^1 \lambda) \in \Gamma(\mathcal{L}) \) for some \(\Delta_\lambda \in \Gamma(DL) \).

Proposition

1. admissible sections \(\Gamma_{adm} \) form a Lie algebra under \(\{ \lambda, \mu \} := \Delta_\lambda(\mu) \),
2. a section is admissible iff it is “constant” along the leaves of \(\mathcal{K} \mathcal{L} \),
3. there is a Jacobi bundle \((L_{red}, J_{red}) \) over \(M/\mathcal{K} \mathcal{L} \) and \(\Gamma(L_{red}) = \Gamma_{adm} \).
Jacobi Reduction

- presymplectic manifolds “can” be reduced to symplectic manifolds,
- Dirac manifolds “can” be reduced to Poisson manifolds,
- precontact manifolds “can” be reduced to contact manifolds,
- Dirac-Jacobi manifolds “can” be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

1. \(\ker \omega_L = L \cap DL \) and it is a subalgebroid of \(DL \),
2. \(\sigma(\ker \omega_L) = TK_L \) for a null foliation \(K_L \).

Definition

A section \(\lambda \) of \(L \) is admissible if \((\Delta_\lambda, j^1\lambda) \in \Gamma(L) \) for some \(\Delta_\lambda \in \Gamma(DL) \).

Proposition

1. admissible sections \(\Gamma_{adm} \) form a Lie algebra under \(\{\lambda, \mu\} := \Delta_\lambda(\mu) \),
2. a section is admissible iff it is “constant” along the leaves of \(K_L \),
3. there is a Jacobi bundle \((L_{red}, J_{red}) \) over \(M/K_L \) and \(\Gamma(L_{red}) = \Gamma_{adm} \).
Jacobi Reduction

- presymplectic manifolds “can” be reduced to symplectic manifolds,
- Dirac manifolds “can” be reduced to Poisson manifolds,
- precontact manifolds “can” be reduced to contact manifolds,
- Dirac-Jacobi manifolds “can” be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

1. \(\ker \omega_L = \mathcal{L} \cap DL \) and it is a subalgebroid of \(DL \),
2. \(\sigma(\ker \omega_L) = TK_L \) for a null foliation \(\mathcal{K}_L \).

Definition

A section \(\lambda \) of \(L \) is admissible if \((\Delta_{\lambda}, j^1\lambda) \in \Gamma(\mathcal{L}) \) for some \(\Delta_{\lambda} \in \Gamma(DL) \).

Proposition

1. Admissible sections \(\Gamma_{adm} \) form a Lie algebra under \(\{\lambda, \mu\} := \Delta_{\lambda}(\mu) \),
2. A section is admissible iff it is “constant” along the leaves of \(\mathcal{K}_L \),
3. There is a Jacobi bundle \((L_{red}, J_{red}) \) over \(M/\mathcal{K}_L \) and \(\Gamma(L_{red}) = \Gamma_{adm} \).
presymplectic manifolds “can” be reduced to symplectic manifolds,
Dirac manifolds “can” be reduced to Poisson manifolds,
precontact manifolds “can” be reduced to contact manifolds,
Dirac-Jacobi manifolds “can” be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)
1. \(\ker \omega_L = L \cap DL \) and it is a subalgebroid of \(DL \),
2. \(\sigma(\ker \omega_L) = TK_L \) for a null foliation \(K_L \).

Definition
A section \(\lambda \) of \(L \) is admissible if \((\Delta_\lambda, j^1\lambda) \in \Gamma(L) \) for some \(\Delta_\lambda \in \Gamma(DL) \).

Proposition
1. admissible sections \(\Gamma_{adm} \) form a Lie algebra under \(\{\lambda, \mu\} := \Delta_\lambda(\mu) \),
2. a section is admissible iff it is “constant” along the leaves of \(K_L \),
3. there is a Jacobi bundle \((L_{\text{red}}, J_{\text{red}}) \) over \(M/K_L \) and \(\Gamma(L_{\text{red}}) = \Gamma_{adm} \).
Jacobi Reduction

- presymplectic manifolds “can” be reduced to symplectic manifolds,
- Dirac manifolds “can” be reduced to Poisson manifolds,
- precontact manifolds “can” be reduced to contact manifolds,
- Dirac-Jacobi manifolds “can” be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

1. \(\ker \omega_L = \mathcal{L} \cap DL \) and it is a subalgebroid of \(DL \),
2. \(\sigma(\ker \omega_L) = TK_L \) for a null foliation \(K_L \).

Definition

A section \(\lambda \) of \(L \) is admissible if \((\Delta_\lambda, j^1\lambda) \in \Gamma(\mathcal{L}) \) for some \(\Delta_\lambda \in \Gamma(DL) \).

Proposition

1. admissible sections \(\Gamma_{\text{adm}} \) form a Lie algebra under \(\{\lambda, \mu\} := \Delta_\lambda(\mu) \),
2. a section is admissible iff it is “constant” along the leaves of \(K_L \),
3. there is a Jacobi bundle \((L_{\text{red}}, J_{\text{red}})\) over \(M/K_L \) and \(\Gamma(L_{\text{red}}) = \Gamma_{\text{adm}} \).
Jacobi Reduction

- presymplectic manifolds “can” be reduced to symplectic manifolds,
- Dirac manifolds “can” be reduced to Poisson manifolds,
- precontact manifolds “can” be reduced to contact manifolds,
- Dirac-Jacobi manifolds “can” be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)

1. $\ker \omega_L = \mathcal{L} \cap DL$ and it is a subalgebroid of DL,
2. $\sigma(\ker \omega_L) = T\mathcal{K}_L$ for a null foliation \mathcal{K}_L.

Definition

A section λ of L is admissible if $(\Delta_\lambda, j^1\lambda) \in \Gamma(\mathcal{L})$ for some $\Delta_\lambda \in \Gamma(DL)$.

Proposition

1. admissible sections Γ_{adm} form a Lie algebra under $\{\lambda, \mu\} := \Delta_\lambda(\mu)$,
2. a section is admissible iff it is “constant” along the leaves of \mathcal{K}_L,
3. there is a Jacobi bundle (L_{red}, J_{red}) over M/\mathcal{K}_L and $\Gamma(L_{red}) = \Gamma_{adm}$.
presymplectic manifolds “can” be *reduced* to symplectic manifolds,
- Dirac manifolds “can” be *reduced* to Poisson manifolds,
- precontact manifolds “can” be *reduced* to contact manifolds,
- *Dirac-Jacobi* manifolds “can” be reduced to Jacobi manifolds.

Remark (under suitable regularity conditions)
1. \(\ker \omega_L = \mathcal{L} \cap DL \) and it is a subalgebroid of \(DL \),
2. \(\sigma(\ker \omega_L) = TK_L \) for a null foliation \(K_L \).

Definition
A section \(\lambda \) of \(L \) is *admissible* if \((\Delta_\lambda, j^1\lambda) \in \Gamma(\mathcal{L})\) for some \(\Delta_\lambda \in \Gamma(DL) \).

Proposition
1. admissible sections \(\Gamma_{adm} \) form a Lie algebra under \(\{ \lambda, \mu \} := \Delta_\lambda(\mu) \),
2. a section is admissible iff it is “constant” along the leaves of \(K_L \),
3. there is a Jacobi bundle \((L_{red}, J_{red})\) over \(M/K_L \) and \(\Gamma(L_{red}) = \Gamma_{adm} \).
Coisotropic Embedding

- presympl. manifolds “are” coisotropics in symplectic manifolds,
- Dirac manifolds “are” coisotropics in Poisson manifolds,
- precontact manifolds “are” coisotropics in contact manifolds,
- Dirac-Jacobi manifolds “are” coisotropics in Jacobi manifolds.

Definition

A submanifold S of a Jacobi manifold (M, L) is **coisotropic** if sections of L vanishing on M are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \rightarrow S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \rightarrow S, \mathfrak{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff $\text{rank} \ker \omega_L = \text{const.}$
Definition

A submanifold S of a Jacobi manifold (M, L) is **coisotropic** if sections of L vanishing on M are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \to S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathcal{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff $\text{rank ker} \omega_L = \text{const.}$
Coisotropic Embedding

- presympl. manifolds “are” coisotropics in symplectic manifolds,
- Dirac manifolds “are” coisotropics in Poisson manifolds,
- precontact manifolds “are” coisotropics in contact manifolds,
- Dirac-Jacobi manifolds “are” coisotropics in Jacobi manifolds.

Definition

A submanifold S of a Jacobi manifold (M, L) is **coisotropic** if sections of L vanishing on M are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \to S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathcal{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff $\text{rank } \ker \omega_L = \text{const.}$
Coisotropic Embedding

- presympl. manifolds “are” coisotropics in symplectic manifolds,
- Dirac manifolds “are” coisotropics in Poisson manifolds,
- precontact manifolds “are” coisotropics in contact manifolds,
- Dirac-Jacobi manifolds “are” coisotropics in Jacobi manifolds.

Definition
A submanifold S of a Jacobi manifold (M, L) is **coisotropic** if sections of L vanishing on M are closed under the Jacobi bracket.

Remark
Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \to S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem
Let $(L \to S, \mathcal{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff $\text{rank} \ ker \omega_L = \text{const}$.

Luca Vitagliano
Dirac-Jacobi Bundles
Coisotropic Embedding

- presympl. manifolds “are” coisotropics in symplectic manifolds,
- Dirac manifolds “are” coisotropics in Poisson manifolds,
- precontact manifolds “are” coisotropics in contact manifolds,
- Dirac-Jacobi manifolds “are” coisotropics in Jacobi manifolds.

Definition

A submanifold S of a Jacobi manifold (M, L) is coisotropic if sections of L vanishing on M are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \to S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathcal{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff $\text{rank ker } \omega_L = \text{const.}$
Coisotropic Embedding

- presympl. manifolds “are” coisotropics in symplectic manifolds,
- Dirac manifolds “are” coisotropics in Poisson manifolds,
- precontact manifolds “are” coisotropics in contact manifolds,
- Dirac-Jacobi manifolds “are” coisotropics in Jacobi manifolds.

Definition

A submanifold S of a Jacobi manifold (M, L) is coisotropic if sections of L vanishing on M are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \to S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \xi)$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff $\text{rank } \ker \omega_L = \text{const.}$
Coisotropic Embedding

- presympl. manifolds “are” coisotropics in symplectic manifolds,
- Dirac manifolds “are” coisotropics in Poisson manifolds,
- precontact manifolds “are” coisotropics in contact manifolds,
- Dirac-Jacobi manifolds “are” coisotropics in Jacobi manifolds.

Definition

A submanifold S of a Jacobi manifold (M, L) is **coisotropic** if sections of L vanishing on M are closed under the Jacobi bracket.

Remark

Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \to S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem

Let $(L \to S, \mathcal{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff $\text{rank ker } \omega_L = \text{const.}$
Coisotropic Embedding

• presympl. manifolds “are” coisotropics in symplectic manifolds,
• Dirac manifolds “are” coisotropics in Poisson manifolds,
• precontact manifolds “are” coisotropics in contact manifolds,
• Dirac-Jacobi manifolds “are” coisotropics in Jacobi manifolds.

Definition
A submanifold S of a Jacobi manifold (M, L) is coisotropic if sections of L vanishing on M are closed under the Jacobi bracket.

Remark
Let $S \subset M$ be a coisotropic submanifold. (Under clean intersection) the restricted line bundle $L|_S \rightarrow S$ carries an induced Dirac-Jacobi structure. To see this, restrict to S the lcs/contact foliation of M.

Theorem
Let $(L \rightarrow S, \mathcal{L})$ be a Dirac-Jacobi bundle. S can be coisotropically embedded in a manifold equipped with a Jacobi bundle iff $\text{rank ker } \omega_\mathcal{L} = \text{const.}$
Several geometric structures are encoded by a Lie algebroid + additional (compatible) structures.

Remark

- a Lie algebroid A may integrate to a Lie groupoid G,
- A + additional structures may integrate to G + additional structures.

A Lie algebroid admits at most one source-simply connected integration.

- Poisson manifolds “integrate” to symplectic groupoids,
- Dirac manifolds “integrate” to presymplectic groupoids,
- Jacobi manifolds “integrate” to contact groupoids,
- Dirac-Jacobi manifolds “integrate” to precontact groupoids.
Several geometric structures are encoded by a Lie algebroid + additional (compatible) structures.

Remark

- A Lie algebroid A may integrate to a Lie groupoid G,
- A + additional structures may integrate to G + additional structures.

A Lie algebroid admits at most one source-simply connected integration.

- Poisson manifolds “integrate” to symplectic groupoids,
- Dirac manifolds “integrate” to presymplectic groupoids,
- Jacobi manifolds “integrate” to contact groupoids,
- Dirac-Jacobi manifolds “integrate” to precontact groupoids.
Several geometric structures are encoded by a Lie algebroid + additional (compatible) structures.

Remark

- A Lie algebroid A may integrate to a Lie groupoid G,
- A + additional structures may integrate to G + additional structures.

A Lie algebroid admits at most one source-simply connected integration.

- Poisson manifolds “integrate” to symplectic groupoids,
- Dirac manifolds “integrate” to presymplectic groupoids,
- Jacobi manifolds “integrate” to contact groupoids,
- Dirac-Jacobi manifolds “integrate” to precontact groupoids.
Several geometric structures are encoded by a Lie algebroid + additional (compatible) structures.

Remark

- A Lie algebroid A may integrate to a Lie groupoid G,
- A + additional structures may integrate to G + additional structures.

A Lie algebroid admits at most one source-simply connected integration.

- Poisson manifolds “integrate” to symplectic groupoids,
- Dirac manifolds “integrate” to presymplectic groupoids,
- Jacobi manifolds “integrate” to contact groupoids,
- Dirac-Jacobi manifolds “integrate” to precontact groupoids.
Let $\mathcal{L} \subset \mathcal{D} L$ be a Dirac-Jacobi structure.

Remark

$(\mathcal{L}, [[-,-]], \sigma_{pr_D})$ is a Lie algebroid, and L carries a representation of \mathcal{L}.

Definition

A precontact groupoid is a triple (\mathcal{G}, L, θ) where

1. $\mathcal{G} \rightarrow M$ is a Lie groupoid with $\dim \mathcal{G} = 2 \dim M + 1$,
2. $L \rightarrow M$ is a line bundle carrying a representation of \mathcal{G},
3. $\theta : \mathcal{G} \rightarrow t^* L$ is a multiplicative 1-form + a clean intersection.

- $A \rightarrow M$ an integrable Lie algebroid,
- $\mathcal{G} \rightarrow M$ its source-simply connected integration,
- $L \rightarrow M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

$\{\text{isomorphisms } A \simeq \mathcal{L}\} \equiv \{\text{precontact groupoid structures } (L, \theta) \text{ on } \mathcal{G}\}$.
Let $\mathcal{L} \subset \mathbb{D} L$ be a Dirac-Jacobi structure.

Remark

$(\mathcal{L}, [[-,-]], \sigma_{pr_D})$ is a Lie algebroid, and L carries a representation of \mathcal{L}.

Definition

A precontact groupoid is a triple (\mathcal{G}, L, θ) where

1. $\mathcal{G} \rightarrow M$ is a Lie groupoid with $\dim \mathcal{G} = 2 \dim M + 1$,
2. $L \rightarrow M$ is a line bundle carrying a representation of \mathcal{G},
3. $\theta : \mathcal{G} \rightarrow t^*L$ is a multiplicative 1-form + a clean intersection.

- $A \rightarrow M$ an integrable Lie algebroid,
- $\mathcal{G} \rightarrow M$ its source-simply connected integration,
- $L \rightarrow M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

\{isomorphisms $A \simeq \mathcal{L}$\} \equiv \{precontact groupoid structures (L, θ) on \mathcal{G}\}.
Let $\mathcal{L} \subset DL$ be a Dirac-Jacobi structure.

Remark

$(\mathcal{L}, [[-,-]], \sigma_{pr_D})$ is a Lie algebroid, and L carries a representation of \mathcal{L}.

Definition

A *precontact groupoid* is a triple (\mathcal{G}, L, θ) where

1. $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with $\dim \mathcal{G} = 2 \dim M + 1$,
2. $L \to M$ is a line bundle carrying a representation of \mathcal{G},
3. $\theta : \mathcal{G} \to t^*L$ is a multiplicative 1-form + a *clean intersection*.

- $A \to M$ an integrable Lie algebroid,
- $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
- $L \to M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

\{isomorphisms $A \simeq \mathcal{L}$\} \equiv \{precontact groupoid structures (L, θ) on \mathcal{G}\}.
Let $\mathcal{L} \subset \mathcal{D}L$ be a Dirac-Jacobi structure.

Remark

$(\mathcal{L}, [[-,-]], \sigma \text{ pr}_D)$ is a Lie algebroid, and L carries a representation of \mathcal{L}.

Definition

A precontact groupoid is a triple (\mathcal{G}, L, θ) where

1. $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with $\dim \mathcal{G} = 2 \dim M + 1$,
2. $L \to M$ is a line bundle carrying a representation of \mathcal{G},
3. $\theta : \mathcal{G} \to t^*L$ is a multiplicative 1-form + a clean intersection.

- $A \to M$ an integrable Lie algebroid,
- $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
- $L \to M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

$\{\text{isomorphisms } A \simeq \mathcal{L}\} \equiv \{\text{precontact groupoid structures } (L, \theta) \text{ on } \mathcal{G}\}$.

Luca Vitagliano

Dirac-Jacobi Bundles

11 / 14
Let $\mathcal{L} \subset \mathcal{D}L$ be a Dirac-Jacobi structure.

Remark

$(\mathcal{L}, [-, -], \sigma_{\text{pr}_D})$ is a Lie algebroid, and L carries a representation of \mathcal{L}.

Definition

A precontact groupoid is a triple (\mathcal{G}, L, θ) where

1. $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with $\dim \mathcal{G} = 2 \dim M + 1$,
2. $L \to M$ is a line bundle carrying a representation of \mathcal{G},
3. $\theta : \mathcal{G} \to t^*L$ is a multiplicative 1-form + a clean intersection.

- $A \to M$ an integrable Lie algebroid,
- $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
- $L \to M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

$\{\text{isomorphisms } A \simeq \mathcal{L}\} \equiv \{\text{precontact groupoid structures } (L, \theta) \text{ on } \mathcal{G}\}$.

Luca Vitagliano
Dirac-Jacobi Bundles
11 / 14
Dirac-Jacobi Bundles and Precontact Groupoids

Let $\mathcal{L} \subset \mathcal{D}L$ be a Dirac-Jacobi structure.

Remark

$(\mathcal{L}, [-,-], \sigma_{pr_D})$ is a Lie algebroid, and L carries a representation of \mathcal{L}.

Definition

A precontact groupoid is a triple (\mathcal{G}, L, θ) where

1. $\mathcal{G} \Rightarrow M$ is a Lie groupoid with $\dim \mathcal{G} = 2 \dim M + 1$,
2. $L \rightarrow M$ is a line bundle carrying a representation of \mathcal{G},
3. $\theta : \mathcal{G} \rightarrow t^*L$ is a multiplicative 1-form + a clean intersection.

- $A \rightarrow M$ an integrable Lie algebroid,
- $\mathcal{G} \Rightarrow M$ its source-simply connected integration,
- $L \rightarrow M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

$\{\text{isomorphisms } A \simeq \mathcal{L}\} \equiv \{\text{precontact groupoid structures } (L, \theta) \text{ on } \mathcal{G}\}$.
Let $\mathcal{L} \subset \mathcal{D}L$ be a Dirac-Jacobi structure.

Remark

$(\mathcal{L}, [-, -], \sigma_{pr_D})$ is a Lie algebroid, and L carries a representation of \mathcal{L}.

Definition

A precontact groupoid is a triple (\mathcal{G}, L, θ) where

1. $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with $\dim \mathcal{G} = 2\dim M + 1$,
2. $L \to M$ is a line bundle carrying a representation of \mathcal{G},
3. $\theta : \mathcal{G} \to t^*L$ is a multiplicative 1-form + a clean intersection.

- $A \to M$ an integrable Lie algebroid,
- $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
- $L \to M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

$$\{\text{isomorphisms } A \simeq \mathcal{L}\} \equiv \{\text{precontact groupoid structures } (L, \theta) \text{ on } \mathcal{G}\}.$$
Let $\mathcal{L} \subset \mathbb{D}L$ be a Dirac-Jacobi structure.

Remark

$(\mathcal{L}, [-,-], \sigma_{pr_D})$ is a Lie algebroid, and L carries a representation of \mathcal{L}.

Definition

A precontact groupoid is a triple (\mathcal{G}, L, θ) where

1. $\mathcal{G} \rightrightarrows M$ is a Lie groupoid with $\dim \mathcal{G} = 2 \dim M + 1$,
2. $L \to M$ is a line bundle carrying a representation of \mathcal{G},
3. $\theta : \mathcal{G} \to t^*L$ is a multiplicative 1-form + a clean intersection.

- $A \to M$ an integrable Lie algebroid,
- $\mathcal{G} \rightrightarrows M$ its source-simply connected integration,
- $L \to M$ a line bundle carrying a representation of \mathcal{G} (hence of A).

Theorem

$\{\text{isomorphisms } A \simeq \mathcal{L}\} \equiv \{\text{precontact groupoid structures } (L, \theta) \text{ on } \mathcal{G}\}$.
<table>
<thead>
<tr>
<th></th>
<th>(\mathcal{E}^1(M))-Dirac</th>
<th>Dirac-Jacobi in (\mathbb{D}L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>definition</td>
<td>[Wade 2000]</td>
<td>[V 2015]</td>
</tr>
<tr>
<td>characteristic foliation</td>
<td>[Iglesias & Marrero 2002]</td>
<td>[V 2015]</td>
</tr>
<tr>
<td>Jacobi reduction</td>
<td>—</td>
<td>[V 2015]</td>
</tr>
<tr>
<td>coisotropic embeddings</td>
<td>—</td>
<td>[V 2015]</td>
</tr>
<tr>
<td>groupoid counterpart</td>
<td>[Iglesias & Wade 2006]</td>
<td>[V 2015]</td>
</tr>
<tr>
<td>gauge transformations</td>
<td>—</td>
<td>[V 2015]</td>
</tr>
<tr>
<td>local structure</td>
<td>—</td>
<td>[V 2015]</td>
</tr>
<tr>
<td>backward-forward maps</td>
<td>—</td>
<td>[V 2015]</td>
</tr>
<tr>
<td>\textit{Dirac-ization}</td>
<td>[Iglesias & Marrero 2002]</td>
<td>[V 2015]</td>
</tr>
<tr>
<td>generalized geometry</td>
<td>[Iglesias & Wade 2005]</td>
<td>[V & Wade 2015]</td>
</tr>
</tbody>
</table>
D. Iglesias-Ponte, and J.C. Marrero,
Lie algebroid foliations and $\mathcal{E}^1(M)$-Dirac structures,

D. Iglesias-Ponte, and A. Wade,
Contact manifolds and generalized complex structures,

D. Iglesias-Ponte, and A. Wade,
Integration of Dirac-Jacobi structures,

L. V.,
Dirac-Jacobi bundles,

A. Wade,
Conformal Dirac structures,
Thank you!