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The first very short work by Alexandre Vinogradov on differential topics
appeared in 1972. It was called “The logic algebra for the theory of linear
differential operators” and contained the construction of basic functors of

differential calculus in commutative algebras.

His latest work ([4], 2016) on this topic was similarly titled “Logic of
differential calculus and the zoo of geometric structures” and contained,
in his words, “zoo” of geometrical structures having a common source in
the calculus of functors of differential calculus over commutative algebras.

Among these structures, the Batalin-Vilkovysky brackets were mentioned
but not described.
The purpose of my talk is to fill this gap.
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Graded commutative algebras

| will have to start by repeating the basic definitions.

Recall that a G-graded commutative algebra over a field k, chark # 2, is
a triple (A, G, (-,+)) where:
@ A is an associative k-algebra;
Q G is a commutative (Abelian) semigroup with unit (which may
sometimes be a group);
Q A = Pgcc A8, where all A2 are k-vector spaces and
A8 - A9 C A8H9 forall g,q € G. If a € A8, then g is called grading
of a and is denoted by w(a), while a is called a homogeneous
element of grading g;
@ The semigroup G is supplied with a parity form (-,-), i.e.,
a Z-bilinear symmetric map (-,-): G X G — Zj, and
ab = (—1){«(@)« () pa for any homogeneous elements a, b € A.
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An important and often arising particular case of a parity form is the
form that can be constructed from parity homomorphism p: G — Z,,
(g1,8)p = p(g1) - p(g2). Parity forms constructed via the parity
homomorphism will be called decomposable.

In what follows, when dealing with elements of graded algebras or of the
other graded objects defined below, we shall assume that they are
homogeneous.

Concepts such as left and right A-modules, A-modules homomorphisms,
and so on can be defined in the usual way. | will omit the details. J

If U,V are arbitrary G-graded objects, then to any homogeneous
elements u € U, v €V, we can assign the element (u, v) € Z; by setting

def

(U, v) = (w(u), w(v)).

If the parity form was constructed from the corresponding
homomorphism, then it is sometimes convenient to use the notation |u|
instead of p(w(u)). In that case (u,v) = |u| - |v|.
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The operators of left and right multiplication

Let A be a G-graded commutative algebra over k, P and Q be G-graded
A-modules. To each element a € A, we assign the operators

ls, ran 85 Homy(P, Q) — Homy (P, Q),

defined as follows:

l(¢)(P) = ap(p ), 90 € Homy(P,Q), peP,
ra(0)(p) = (1) (ap),
a(p) = ra() — la()-

The operators [, and r, of left and right multiplication of elements of the
k-module Homy (P, Q) by elements of the algebra A obviously commute.
This allows us to define, in Homg (P, Q), the structure of a bimodule
over the algebra A. Let ag, ..., as € A; then we put

2. =02y 0...00,,.

gueay
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An element A € Homg (P, Q) will be called a k-/inear differential operator
(DO) of order < s over A if, for any tuple of elements ag, a1, ..., as € A,

0z,....0s(A) = 0.

The set of all DO’s of order < s from P to Q is stable with respect to
the left as well as to the right multiplication by elements of the algebra A
and is therefore supplied with two natural G-graded .A-module structures.
The G-graded A-module defined by the left structure will be denoted by
Diffs(P, Q).

By definition, Hom 4(P, Q) = Diffo(P, Q).

Obviously, we have the sequence of natural embeddings

HomA(P, Q) = Diffo(P, Q) c...C Diff/(P, Q) C Diff/+1('P, Q) c...

The map A: A — P is called a derivation with values in the A-module P
if it satisfies the graded Leibnitz rule A(ab) = A(a)b + (—1){>2aA(b). J

The set of all derivations from A to P is denoted by D(P).
Obviously, D(P) is a submodule of Diff1(.A, P).
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From now we will simply write Diffs Q instead of Diffs(.A, Q).

The obvious embedding of .A-modules Diff,_; A C Diffy A allows us to
define the quotient module

Sk(A) & Diff, A/ Diff 1 A,
which is called the module of symbols of order k (or the module of
k-symbols). The coset of an operator A € Diffy A modulo Diffx_; A will
be denoted by smbl, A and called the symbol of A. Let us define the
algebra of symbols S,(A) for the algebra A by setting

S.(A) = PSa(A).
n=0 y
Putting smbli A - smbl, V & smbl;,(A o V) we equip S, (A) with the
structure of the A-algebra. It is easy to check that
smblx A - smbl, V = (=1)Y) smbl, V - smbl, A, therefore S, (A) is a
commutative graded algebra.
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Brackets defined by symbols

Let a1,...,a, € A and A € Diff, A. It is easy to prove that the map
smbl,(A): Ax ... x A— A given by

(smbly(A)) (a1, ..., an) > 6ay,... a0 (D)

is well defined, depends only on the symbol of the operator A, and is
linear in each argument.
Set

[a1,...,an]a & (smbla(A)) (a1, ..., an).

(I stress that [a1, ..., an]a depends not on the operator A itself, but only
on its symbol.)
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Multiindex notations

We put /" & (1,...,n), by the letters I, J we will always denote ordered
multiindices

= (it,...,i), 1<ih <ib<...<lg
J:(Jlav.j/)v 1<J1 <J2<<J/

Then, we put |I| =k, |J| = 1. If ir # js forallr k, s </, then we can

consider the nonordered multiindex (/, J) = (11, N N T 1) B

The sum | + J will be defined as the multiindex obtained by ordering the
multiindex (/, J).

Let ay,...,a, € A be homogeneous elements and let | = (i, ..., i,) be
an ordered multiindex; the ordered set aj;, ..., a;, will be denoted by a(/).

Set w(a(l)) = >, w(ai).
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Let 0 = (01,02,...,0,) be a permutation of the natural numbers

1,2,...,n, let
a(o) = (a5, oss - - -, Ao,)
be a set of homogeneous elements from A. Denote by ,(,) the
symmetric product of elements (a,,, oy, - - -, a0, ):
def

MNa(o) = 801 @ 85, © ... O ag,.
Products I1,(,) and M,»y may differ in sign:

I'Ia(,n) = (—1)’I'Ia([,)

Set, by definition, |a(o)]s & . Now let the multiindices / and J be such
that / + J = I". It is easy to check, that

|a(l, )]s = [a(J, )]s + (a(!), a(J)). (1)
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Action of an operator 9,

The operator d, acts on the composition of DO's as a derivation:

6.(A0V)=6,(8)oV + (~1) @A A0 5,(V). (2)

Iterating the last equality, we get

Samy (B 0 V) = Y (~1)RUDIHEDA) 5 ) (A) 0 6,00(V)  (3)

I+J=Im
o<1[<m

All the required bracket structures are obtained from this basic formula.

Now assume that V = A € Diff, A and m = 2n — 1; then in the
decomposition (3) only the terms with |/| = n,|J| = n—1, and

|[l] = n—1,|J| = n will be nonzero, and so in this case the equality (3)
can be given the following form:

Sa(n-1y (A 0 A) = Z (_1)\a(/,J)\s+<a(J),A>53(,)(A) 0 d,u(D) (4

I4J=12n—1
n—1<|/|<n
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In this sum, to each index /, |/| = n, corresponds two summands:

(—1)2UDNHDB) 5 (A) 0 8,5 (A)
S (—1)aUDl ) A>5 H(A) 0 d,n(A)
=(=1)l DD B 5 (A 0 8,05 (D)
(1) 20Dl AN HEB) 5, (A) o 5,00 (D) (5)
=(=1)la I+ a().8)+(A,8) [( 1)<A A>5a(/ (B) 0 6as)(AD)
(= 1) (@UAH(AA)H (D) a())+a(1),4) § a20)(A) 0 6,01 (A)]
(- 1)|a (1 DlA (UL AV HAB) [(_1) AR5 ) (A) 0 8204y (D)
(1) B0 @80 BN 5 (A) 0 5,0(A)] )

Note, that d,(/)(A) € Hom4(A, A) = A. Suppose now that the operator
A is odd, that is, (A, A) = 1. Then the expression in square brackets is
nothing more than

(—1) 0B BN G ) (A)od 1y (D) —Ba1y ()08 (D) = 5, (8) (Fa(s) (D))

M. M. Vinogradov n-ary Batalin Vilkovysky brackets



Now equality (4) can be rewritten as

Sagn-1y(D 0 A) = — Z (- )\a(l A+ (a 55 2) (81 (A))

I4+J=12n—1
[1]=n

Since, by definition, d,()(A) = [a(/)]a and
Iania(9an(A)) = [[a(D]a, a(J)]a,

we obtain the following equality

sy (BoA) = — 37 (~1)DH DD ()]s, a(N)]a.  (6)

I4+J=12n—1
[1]=n

A priori A o A € Diffy, A, but if A satisfies the condition
Ao A € Diffy,—2 A, then from (6) follows that

S (YO (a(]s, a(Na =0 (D)

I4+J=1(2n—1)
[1]=n

This is the n-ary Jacobi identity for the bracket [-,...,-]a.
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n-ary Batalin Vilkovysky brackets

Now it is natural to give the following definitions:
A DO of odd grading A € Diff, A satisfies to the condition
Ao A € Diffy, 5 A. (8)

is called a Batalin-Vilkovysky operator (BVO).
Further, smbl, A is called the Batalin-Vilkovysky symbol. The bracket

[y ]a A® ... @A A,

is called the Batalin-Vilkovysky bracket (BVB).

-

It is easy to check that if A is BVO and smbl, A = smbl, A’, then A’ is
BVO too. That is, BVB depends only on the symbol of BVO.

Formula (7) means that the Batalin-Vilkovysky operator defines the
structure of a n-ary Lie algebra on A.
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Recall that Lie structures £ and A are said to be compatible, if
al + BN is a Lie structure again for all o, 8 € Ag.

Proposition

Let A, V € Diff, A be Batalin-Vilkovysky operators.
Lie structures [ ]a and [ ]v are compatible < [A, V] € Diffa,_» A.

Proposition

If A is DO of order n such that A o A € Diffy,_» A and V is DO of
order k such that V o V € Diffyx_» A, then the composition

AoV e Diff2n+2k72 A.

Corollary

1. If A is a Batalin-Vilkovysky operator of order n and V is an even DO
of order k such that V o V € Diff,_» A, then the composition Ao V is
a Batalin-Vilkovysky operator of order n + k.

2.If A, A’, A" are Batalin-Vilkovysky operators, then the composition
Ao A’ o A" is a Batalin-Vilkovysky operator too.

Remark. Since smbly (A o V) = (—=1)AY) smbl, (V o A), the order of
the operators in compositions mention above is not important.
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Batalin Vilkovysky brackets, n = 2

Consider the case n = 2. Let (, ) be a decomposible parity form, then
the Jakobi identity (7) takes the following form

(=1)=![ay, a2)a, a3]a + (—1)1%2F 1520 [[a) ) a5] 4, a2]a

+(- 1)kl tal st all[a) a3)a, a1]a = 0

(9)

It is a classical form of Jacobi identity for Batalin Vilkovysky bracket. We
stress, however, that the operator A must satisfy the condition

A o A € Diffy A, which is weaker than the original Batalin-Vilkovysky
condition Ao A = 0. )
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Strong homotopy Lie algebra

For A € Diff, A, we define the hierarchy of brackets ®X by setting

oK (a(1%)) E (8,04(2)) (1)

Notice, that ®3 =[ ]a and ®K =0 for k > n.
Unlike Akman [1], we consider here arbitrary differential operators, and
not only those that

Oar,....an_1(D) € D(A) for any tuple of elements ay,...,a,-1 € A.

Now, set Q7 = Q™(a(I™)) & 6,4m)(A 0 A), Ay € 6,1(A) and

def
D,y = 02 (D).

For V = A, the basic formula (3) can be rewritten as follows

Q7 = 6,m (Ao A) Z D (—1)EUIHEDAIAL Gy 0 Ay (10)

k=0 I+J=Im
|J]=k
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It is easy to obtain by direct calculation that

3 ) ) (5 (A ) (1),

k=0 I+J=Im
[l=k

if (A, A) = 1. Recall, that
A,)(1) = ®A(a(J))  and
(G (a())(Da(n)) (1) = R (‘DkA(a(J))aa(/)),

therefore we have

S (1) 686 (0 (a4) a(1)) = ~0(1)

k=0 I+J=Im _ —(53(1’”)(A o A))(l)

[J]=k
If Ao A € Diff,,_1 A then the right-hand side of this equality is zero.

In particular, if A o A = 0 then the right-hand side of this equality is zero
for all m.
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So, if the odd operator A € Diff, A is such that Ao A =0, then it
defines the structure of an "ordinary” n-ary Lie algebra and the structure
of a strong homotopy Lie algebra:

> ()OO a1, 2()]a

I4+J=1(2n—1)
|[/|=n

= Z (=1)la0-DlsHa().2) pr (q;nA (a(1)), a(J)) =0,

I+J:l(2"*1)
=

S0 3 (1) B 07E 0k (1)), () =

k=0 I+J=Im
|1]=k

where m=1,...,2n— 2.
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