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The ¦rst very short work by Alexandre Vinogradov on di¨erential topics
appeared in 1972. It was called ¤The logic algebra for the theory of linear
di¨erential operators¥ and contained the construction of basic functors of

di¨erential calculus in commutative algebras.

His latest work ([4], 2016) on this topic was similarly titled ¤Logic of
di¨erential calculus and the zoo of geometric structures¥ and contained,
in his words, ¤zoo¥ of geometrical structures having a common source in
the calculus of functors of di¨erential calculus over commutative algebras.

Among these structures, the Batalin-Vilkovysky brackets were mentioned
but not described.

The purpose of my talk is to ¦ll this gap.
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Graded commutative algebras

I will have to start by repeating the basic de¦nitions.

Recall that a G -graded commutative algebra over a ¦eld k, char k �= 2, is
a triple (A,G , 〈·, ·〉) where:
1 A is an associative k-algebra;
2 G is a commutative (Abelian) semigroup with unit (which may
sometimes be a group);

3 A = ⊕g∈GAg , where all Ag are k-vector spaces and
Ag · Aq ⊂ Ag+q for all g , q ∈ G . If a ∈ Ag , then g is called grading
of a and is denoted by ω(a), while a is called a homogeneous
element of grading g ;

4 The semigroup G is supplied with a parity form 〈·, ·〉, i.e.,
a Z-bilinear symmetric map 〈·, ·〉 : G × G → Z2, and
ab = (−1)〈ω(a),ω(b)〉ba for any homogeneous elements a, b ∈ A.
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An important and often arising particular case of a parity form is the
form that can be constructed from parity homomorphism ρ : G → Z2,
〈g1, g2〉ρ = ρ(g1) · ρ(g2). Parity forms constructed via the parity
homomorphism will be called decomposable.

In what follows, when dealing with elements of graded algebras or of the
other graded objects de¦ned below, we shall assume that they are
homogeneous.

Concepts such as left and right A-modules, A-modules homomorphisms,
and so on can be de¦ned in the usual way. I will omit the details.

If U ,V are arbitrary G -graded objects, then to any homogeneous
elements u ∈ U , v ∈ V , we can assign the element 〈u, v〉 ∈ Z2 by setting

〈u, v〉 def= 〈ω(u), ω(v)〉.

If the parity form was constructed from the corresponding
homomorphism, then it is sometimes convenient to use the notation |u|
instead of ρ(ω(u)). In that case 〈u, v〉 = |u| · |v |.
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The operators of left and right multiplication

Let A be a G -graded commutative algebra over k, P and Q be G -graded
A-modules. To each element a ∈ A, we assign the operators

la, ra É δa : Homk(P ,Q)→ Homk(P ,Q),

de¦ned as follows:

la(ϕ)(p) = aϕ(p), ϕ ∈ Homk(P ,Q), p ∈ P ,

ra(ϕ)(p) = (−1)〈ϕ,a〉ϕ(ap),
δa(ϕ) = ra(ϕ) − la(ϕ).

The operators la and ra of left and right multiplication of elements of the
k-module Homk(P ,Q) by elements of the algebra A obviously commute.
This allows us to de¦ne, in Homk(P ,Q), the structure of a bimodule
over the algebra A. Let a0, . . . , as ∈ A; then we put

δa0,...,as = δa0 ◦ . . . ◦ δas .
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An element – ∈ Homk(P ,Q) will be called a k-linear di¨erential operator
(DO) of order � s over A if, for any tuple of elements a0, a1, . . . , as ∈ A,

δa0,...,as (–) = 0.

The set of all DO£s of order � s from P to Q is stable with respect to
the left as well as to the right multiplication by elements of the algebra A
and is therefore supplied with two natural G -graded A-module structures.
The G -graded A-module de¦ned by the left structure will be denoted by
Di¨s(P ,Q).
By de¦nition, HomA(P ,Q) = Di¨0(P ,Q).
Obviously, we have the sequence of natural embeddings

HomA(P ,Q) = Di¨0(P ,Q) ⊂ . . . ⊂ Di¨ l(P ,Q) ⊂ Di¨ l+1(P ,Q) ⊂ . . .

The map –: A → P is called a derivation with values in the A-module P
if it satis¦es the graded Leibnitz rule –(ab) = –(a)b + (−1)〈a,–〉a–(b).

The set of all derivations from A to P is denoted by D(P).
Obviously, D(P) is a submodule of Di¨1(A,P).
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Symbols

From now we will simply write Di¨s Q instead of Di¨s(A,Q).

The obvious embedding of A-modules Di¨k−1A ⊂ Di¨k A allows us to
de¦ne the quotient module

Sk(A) def= Di¨k A/Di¨k−1A,

which is called the module of symbols of order k (or the module of
k-symbols). The coset of an operator – ∈ Di¨k A modulo Di¨k−1A will
be denoted by smblk – and called the symbol of –. Let us de¦ne the
algebra of symbols S∗(A) for the algebra A by setting

S∗(A) =
∞⊕
n=0

Sn(A).

Putting smblk – · smbln∇ def= smblk+n(– ◦ ∇) we equip S∗(A) with the
structure of the A-algebra. It is easy to check that
smblk – · smbln∇ = (−1)〈–,∇〉 smbln∇ · smblk –, therefore S∗(A) is a
commutative graded algebra.
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Brackets de¦ned by symbols

Let a1, . . . , an ∈ A and – ∈ Di¨nA. It is easy to prove that the map
smbln(–): A× . . .×A → A given by

(
smbln(–)

)
(a1, . . . , an) �→ δa1,...,an(–)

is well de¦ned, depends only on the symbol of the operator –, and is
linear in each argument.
Set

[a1, . . . , an]–
def=

(
smbln(–)

)
(a1, . . . , an).

(I stress that [a1, . . . , an]– depends not on the operator – itself, but only
on its symbol.)
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Multiindex notations

We put I n def= (1, . . . , n), by the letters I , J we will always denote ordered
multiindices

I = (i1, . . . , ik), 1 � i1 < i2 < . . . < ik � n,
J = (j1, . . . , jl ), 1 � j1 < j2 < . . . < jl � n.

Then, we put |I | = k , |J| = l . If ir �= js for all r � k , s � l , then we can
consider the nonordered multiindex (I , J)

def
= (i1, . . . , ik , j1, . . . , jl ).

The sum I + J will be de¦ned as the multiindex obtained by ordering the
multiindex (I , J).
Let a1, . . . , an ∈ A be homogeneous elements and let I = (i1, . . . , in) be
an ordered multiindex; the ordered set ai1 , . . . , ain will be denoted by a(I ).
Set ω(a(I )) =

∑
i∈I ω(ai).
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Let σ = (σ1, σ2, . . . , σn) be a permutation of the natural numbers
1, 2, . . . , n, let

a(σ) = (aσ1 , aσ2 , . . . , aσn)

be a set of homogeneous elements from A. Denote by ša(σ) the
symmetric product of elements (aσ1 , aσ2 , . . . , aσn):

ša(σ)
def
= aσ1 � aσ2 � . . .� aσn .

Products ša(σ) and ša(I n) may di¨er in sign:

ša(I n) = (−1)rša(σ)

Set, by de¦nition, |a(σ)|s def= r . Now let the multiindices I and J be such
that I + J = I n. It is easy to check, that

|a(I , J)|s = |a(J, I )|s + 〈a(I ), a(J)〉. (1)
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Action of an operator δa
The operator δa acts on the composition of DO£s as a derivation:

δa(– ◦ ∇) = δa(–) ◦ ∇+ (−1)〈a,–〉– ◦ δa(∇). (2)

Iterating the last equality, we get

δa(I m)(– ◦ ∇) =
∑
I+J=Im
0�|I |�m

(−1)|a(I ,J)|s+〈a(J),–〉δa(I )(–) ◦ δa(J)(∇) (3)

All the required bracket structures are obtained from this basic formula.

Now assume that ∇ = – ∈ Di¨nA and m = 2n− 1; then in the
decomposition (3) only the terms with |I | = n, |J| = n − 1, and
|I | = n − 1, |J| = n will be nonzero, and so in this case the equality (3)
can be given the following form:

δa(I 2n−1)(– ◦–) =
∑

I+J=I2n−1
n−1�|I |�n

(−1)|a(I ,J)|s+〈a(J),–〉δa(I )(–) ◦ δa(J)(–) (4)
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In this sum, to each index I , |I | = n, corresponds two summands:

(−1)|a(I ,J)|s+〈a(J),–〉δa(I )(–) ◦ δa(J)(–)
+(−1)|a(J,I )|s+〈a(I ),–〉δa(J)(–) ◦ δa(I )(–)
=(−1)|a(I ,J)|s+〈a(J),–〉δa(I )(–) ◦ δa(J)(–)
+(−1)|a(I ,J)|s+〈a(I ),a(J)〉+〈a(I ),–〉δa(J)(–) ◦ δa(I )(–)
=(−1)|a(I ,J)|s+〈a(J),–〉+〈–,–〉[(−1)〈–,–〉δa(I )(–) ◦ δa(J)(–)
+(−1)〈a(J),–〉+〈–,–〉+〈a(I ),a(J)〉+〈a(I ),–〉δa(J)(–) ◦ δa(I )(–)

]

=(−1)|a(I ,J)|s+〈a(J),–〉+〈–,–〉[(−1)〈–,–〉δa(I )(–) ◦ δa(J)(–)
+(−1)〈δa(I )(–),δa(J)(–)〉δa(J)(–) ◦ δa(I )(–)

]

(5)

Note, that δa(I )(–) ∈ HomA(A,A) = A. Suppose now that the operator
– is odd, that is, 〈–,–〉 = 1. Then the expression in square brackets is
nothing more than

(−1)〈δa(I )(–),δa(J)(–)〉δa(J)(–)◦δa(I )(–)−δa(I )(–)◦δa(J)(–) = δδa(I )(–)(δa(J)(–))
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Now equality (4) can be rewritten as

δa(I 2n−1)(– ◦–) = −
∑

I+J=I2n−1
|I |=n

(−1)|a(I ,J)|s+〈a(J),–〉δδa(I )(–)(δa(J)(–))

Since, by de¦nition, δa(I )(–) = [a(I )]– and

δ[a(I )]–(δa(J)(–)) = [[a(I )]–, a(J)]–,

we obtain the following equality

δa(I 2n−1)(– ◦–) = −
∑

I+J=I2n−1
|I |=n

(−1)|a(I ,J)|s+〈a(J),–〉[[a(I )]–, a(J)]–. (6)

A priori – ◦– ∈ Di¨2nA, but if – satis¦es the condition
– ◦– ∈ Di¨2n−2A, then from (6) follows that

∑
I+J=I (2n−1)

|I |=n

(−1)|a(I ,J)|s+〈a(J),–〉[[a(I )]–, a(J)]– = 0. (7)

This is the n-ary Jacobi identity for the bracket [ ·, . . . , · ]–.
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n-ary Batalin Vilkovysky brackets

Now it is natural to give the following de¦nitions:

A DO of odd grading – ∈ Di¨nA satis¦es to the condition

– ◦– ∈ Di¨2n−2A. (8)

is called a Batalin-Vilkovysky operator (BVO).
Further, smbln– is called the Batalin-Vilkovysky symbol . The bracket

[ ·, . . . , · ]– : A⊗ . . .⊗A → A,

is called the Batalin-Vilkovysky bracket (BVB).

It is easy to check that if – is BVO and smbln– = smbln–′, then –′ is
BVO too. That is, BVB depends only on the symbol of BVO.

Formula (7) means that the Batalin-Vilkovysky operator de¦nes the
structure of a n-ary Lie algebra on A.
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Recall that Lie structures L and N are said to be compatible, if
αL+ βN is a Lie structure again for all α, β ∈ A0.
Proposition

Let –, ∇ ∈ Di¨nA be Batalin-Vilkovysky operators.
Lie structures [ ]– and [ ]∇ are compatible ⇔ [–,∇] ∈ Di¨2n−2A.

Proposition

If – is DO of order n such that – ◦– ∈ Di¨2n−2A and ∇ is DO of
order k such that ∇ ◦∇ ∈ Di¨2k−2A, then the composition
– ◦ ∇ ∈ Di¨2n+2k−2A.

Corollary

1. If – is a Batalin-Vilkovysky operator of order n and ∇ is an even DO
of order k such that ∇ ◦∇ ∈ Di¨2k−2A, then the composition – ◦ ∇ is
a Batalin-Vilkovysky operator of order n + k .
2. If –, –′, –′′ are Batalin-Vilkovysky operators, then the composition
– ◦–′ ◦–′′ is a Batalin-Vilkovysky operator too.

Remark. Since smblk (– ◦ ∇) = (−1)〈–,∇〉 smblk (∇ ◦–), the order of
the operators in compositions mention above is not important.
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Batalin Vilkovysky brackets, n = 2

Consider the case n = 2. Let 〈 , 〉 be a decomposible parity form, then
the Jakobi identity (7) takes the following form

(−1)|a3|[[a1, a2]–, a3]– + (−1)|a2|·|a3|+|a2|[[a1, a3]–, a2]–
+(−1)|a1|·|a2|+|a1|·|a3|+|a1|[[a2, a3]–, a1]– = 0

(9)

It is a classical form of Jacobi identity for Batalin Vilkovysky bracket. We
stress, however, that the operator – must satisfy the condition
– ◦– ∈ Di¨2A, which is weaker than the original Batalin-Vilkovysky
condition – ◦– = 0.
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Strong homotopy Lie algebra

For – ∈ Di¨nA, we de¦ne the hierarchy of brackets �k– by setting

�k–(a(I
k)) def=

(
δa(I k)(–)

)
(1).

Notice, that �n– = [ ]– and �
k
– = 0 for k > n.

Unlike Akman [1], we consider here arbitrary di¨erential operators, and
not only those that

δa1,...,an−1(–) ∈ D(A) for any tuple of elements a1, . . . , an−1 ∈ A.

Now, set Ÿm = Ÿm(a(Im))
def
= δa(I m)(– ◦–), –a(I ) def= δa(I )(–) and

–a(J)
def= δa(J)(–).

For ∇ = –, the basic formula (3) can be rewritten as follows

Ÿm = δa(I m)(– ◦–) =
m∑
k=0

∑
I+J=Im
|J|=k

(−1)|a(I ,J)|s+〈a(J),–〉–a(I ) ◦–a(J). (10)
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It is easy to obtain by direct calculation that

Ÿm(1) = −
m∑
k=0

∑
I+J=Im

|J|=k

(−1)|a(J,I )|s+〈a(I ),–〉
(
δ–a(J)(1)(–a(I ))

)
(1),

if 〈–,–〉 = 1. Recall, that

–a(J)(1) = �
k
–(a(J)) and(

δ�k–(a(J))(–a(I ))
)
(1) = �m−k+1–

(
�k–

(
a(J)

)
, a(I )

)
,

therefore we have

m∑
k=0

∑
I+J=Im

|J|=k

(−1)|a(J,I )|s+〈a(I ),–〉�m−k+1–

(
�k–

(
a(J)

)
, a(I )

)
= −Ÿ(1)

= −
(
δa(I m)(– ◦–)

)
(1)

If – ◦– ∈ Di¨m−1A then the right-hand side of this equality is zero.
In particular, if – ◦– = 0 then the right-hand side of this equality is zero
for all m.
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So, if the odd operator – ∈ Di¨nA is such that – ◦– = 0, then it
de¦nes the structure of an ¥ordinary¥ n-ary Lie algebra and the structure
of a strong homotopy Lie algebra:

∑
I+J=I (2n−1)

|I |=n

(−1)|a(I ,J)|s+〈a(J),–〉[[a(I )]–, a(J)]–

≡
∑

I+J=I (2n−1)
|I |=n

(−1)|a(I ,J)|s+〈a(J),–〉�n–
(
�n–

(
a(I )

)
, a(J)

)
= 0,

m∑
k=0

∑
I+J=Im
|I |=k

(−1)|a(J,I )|s+〈a(I ),–〉�m−k+1– (�k–(a(I )), (a(J)) = 0,

where m = 1, . . . , 2n− 2.
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