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SHAPE MORPHING

Morphing between Bush and Obama
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SHAPE MORPHING

to a girl?

A.Vasil'ev (Bergen)

Sub-Riemannian geodesics...

Aizxana 2006

How does one compare a rabbit and a girl? How do we transform

Geometry of PDEs

a

rabbit
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FACTORIZATION

d ¢+ ¢

Rabbits...
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COMPARING SHAPES

Hausdorff distance (1914)

sup inf d(z,
sup nf d(x.4)

inf d(z,
i )

@ dy(X,Y) = max{sup |nf d(x,y),sup inf d(x,y)}.
xeXYEY yey xeX

@ First template and image are pre-processed via an edge detector (pattern
recognition).

@ Lack of structure morphing between shapes.
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MOTION IN THE SPACE OF SHAPES

Deterministic or stochastic (D. Mumford, ICM 2002 plenary lecture)

@ How do we tune shapes (forgetting shift, rotation, and scaling)?

@ How do we compare shapes? (Hausdorff distance is not satisfactory!)
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MOTION IN THE SPACE OF SHAPES

Deterministic or stochastic (D. Mumford, ICM 2002 plenary lecture)

@ How do we tune shapes (forgetting shift, rotation, and scaling)?
@ How do we compare shapes? (Hausdorff distance is not satisfactory!)

@ We will find sub-Riemannian geodesic equations for morphing one shape to
another on the Virasoro-Bott group as a space of shapes with the
distribution provided by the Teichmiiller space and curve.
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CONFORMAL WELDING

fz)=c0+az+cz?+...

glz)=aiz+a+ail+...
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CONFORMAL WELDING

Factorization:

f(z)=z+0z?+...

51

g(z):alz—&-ao-&-a,l%-&-...

@ By JF( we denote the class of all conformal embeddings of the unit
disk D to C normalized as f(z) = z + cpz%> + ..., and C>®-smooth on

the boundary S = 9D.
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CONFORMAL WELDING

Factorization:

gz)=aiz+a+a1l+...

o v=f"log|a € Diff St /Rot— ‘fingerprints’;
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CONFORMAL WELDING

Factorization:

gz)=aiz+a+a1l+...

o v=f"logls € Diff S1/Rot— ‘fingerprints’;
o f € Fo v € Diff S'/Rot;
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CONFORMAL WELDING

Factorization:

gz)=aiz+a+a1l+...

o 7= f"1og|s € Diff S'/Rot— ‘fingerprints’;

o f € Fy S ~ € Diff S*/Rot;

@ Kirillov manifold= smooth Teichmiiller curve.
A.Vasil'ev (Bergen)
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CONFORMAL WELDING

Factorization:

n

fz)=c0+az+az?+...

51

‘g(z):era,l%Jr...‘

o By Gy we denote the class of all conformal embeddings of the exterior
of the unit disk D™ to C with the hydrodynamics normalisation
normalized as g(z) = z+ =2 + ..., and C*°-smooth on the
boundary S! = 9D.
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CONFORMAL WELDING

Factorization:

n

fz)=c0+az+cz?+...

51

‘g(z):era,l%Jr...‘

o y=flog|s € Diff SL/Méb, g € Gy = 7 € Diff S/Méb;
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CONFORMAL WELDING

Factorization:

n

fz)=c0+az+cz?+...

51

‘g(z):era,l%Jr...‘

o y=flog|s € Diff SL/Méb, g € Gy = 7 € Diff S/Méb;

@ Smooth Teichmiiller manifold.

A.Vasil'ev (Bergen)

Sub-Riemannian geodesics... Geometry of PDEs 11 /38



VIRASORO-BOTT GROUP

Witt algebra
o Vect S1- Lie algebra of smooth vector fiels on St
o It can be identified with the Lie algebra diff S!;
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VIRASORO-BOTT GROUP

Witt algebra
o Vect S1- Lie algebra of smooth vector fiels on St
@ It can be identified with the Lie algebra diff S*;
o Lie bracket [¢1(6)0p, p2(0)0s] = (P12 — ¢21)0:
o If {—ie’k?}, 7 is a complex Fourier basis, then

[—ie™0 8y, —ie™ dp] = —i(n — m)e’(”+m)989;
or
Ly = —iemy = [Lm, Ln] = (n — m)Lpym— Witt relation.
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VIRASORO-BOTT GROUP

Virasoro algebra
e vit = Vect ST @ R:

o (p,c) € viv = [(p1, 1), (¢2, 2)oic = ([p1, @2], Sww(e1, ¥2)),

o Gelfand-Fuchs cosycle is unique non-trivial:

2
wu(P1, p2) = Z/o (1p1h + vy ) db;

o wu(L_p, Ly) = n(u+ vn?).

@ Virasoro commutation relations:

[Lm, Lnloie = (n — m)Lpim + n(,u +vn )(5,7 _

@ c— central charge.

A.Vasil'ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs
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VIRASORO-BOTT GROUP

Virasoro-Bott group
o Vir=Diff 5 x R:
o (¢,a) eVir=
(¢1,a1) 0 (¢2,a2) = ((¢1 0 ¢2), a1 + a2 + 5Qu (b1, $2));

(here we use the covering space for Diff S1)

@ Thurston-Bott cosicle:

Qo (b1, ¢2) = pA(¢1, $2) + vB(d1, 92);

o Extensions are non-trivial if and only if v # Q.
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COADJOINT REPRESENTATION

@ We will work with Diff S' and Virasoro-Bott group Vir=Diff S* @ R;
o Classification of orbits in the coadjoint representation of Vir;

o Diff S'/Méb and Diff S*/Rot carry the structure of
infinite-dimensional, homogeneous, complex analytic Kahlerian
manifolds (after complexification).
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COADJOINT REPRESENTATION

We will work with Diff S and Virasoro-Bott group Vir=Diff S @ R;
Classification of orbits in the coadjoint representation of Vir;

Diff S*/Mob and Diff S*/Rot carry the structure of
infinite-dimensional, homogeneous, complex analytic Kahlerian
manifolds (after complexification).

©

©

(2

o Diff S'/M&b is a smooth approximation of the universal Teichmiiller
space T;
o Diff S'/Rot is a smooth approximation of the universal Teichmiiller

curve T = complex line bundle over T;
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COADJOINT REPRESENTATION

We will work with Diff S and Virasoro-Bott group Vir=Diff S @ R;
Classification of orbits in the coadjoint representation of Vir;

Diff S*/Mob and Diff S*/Rot carry the structure of
infinite-dimensional, homogeneous, complex analytic Kahlerian

©

©

(2

manifolds (after complexification).

o Diff S'/M&b is a smooth approximation of the universal Teichmiiller
space T;
o Diff S'/Rot is a smooth approximation of the universal Teichmiiller

curve T = complex line bundle over T;
Fibration 7: 7 — T with typical fiber Méb/S! ~ D~ = {|z| > 1}.

(2
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FRECHET MANIFOLDS

o Diff S is a Lie-Fréchet group;
o T = Diff S'/Rot and T = Diff S!/M&b are Fréchet homogeneous
manifolds.
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FRECHET MANIFOLDS

o Diff S is a Lie-Fréchet group;

o T = Diff S'/Rot and T = Diff S!/M&b are Fréchet homogeneous
manifolds.

o Diff S actson T and T:
o T is a base space for the principal bundle Rot—sDiff ST =% T
o T is a base space for the principal bundle Méb—Diff ST ™% T.

Analogously, for Diff S @ R.
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LIE-FRECHET ALGEBRAS

o The Lie algebra of Diff S is the Witt algebra 0iff ~ Vect S*;
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LIE-FRECHET ALGEBRAS

o The Lie algebra of Diff S is the Witt algebra 0iff ~ Vect S*;

@ Real-valued form

1 27
() = 5 [ v(o)de
o Complex-valued form
1 27 .
m(v) = g/o e %v(0)do.
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LIE-FRECHET ALGEBRAS

©

The Lie algebra of Diff St is the Witt algebra diff ~ Vect St;

Real-valued form

©

2T
() = 5 [ v(o)de

(2

Complex-valued form

27
n1(v) L /0 e %v(0)do.

T2

©

vg = kerng and vy = ker g N ker ny;
Vect S1 = vg @ vot = v; @ mab.

©

A.Vasil'ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs
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LIE-FRECHET ALGEBRAS

The Lie algebra of Vir is the Virasoro algebra vity,;
Real-valued form is the same 7p(v)
¢ = (kernp,0) and £ = (agdy, b) = (vot, b);

Then vir,, =e¢® L.

e © ¢ ¢
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SUB-BUNDLES FOR TDiff S!

@ V, = left translations of v, by Diff S;
@ V) = left translations of v, by Diff S;
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SUB-BUNDLES FOR TDiff S!

Vo = left translations of v, by Diff S1;

Vi1 = left translations of v, by Diff S1;

R = ker dmg, M = ker d7y;

TDiff S1=Vy &R =V & M;

Sub-bundles Vy and V; are Ehresmann connections.

e © e ¢ ¢
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SUB-BUNDLE FOR T VIR

@ & = left translations of ¢ by Vir;
o R = ker dmy;
o TVir=£E@ (R xR);

A.Vasil'ev (Bergen) Sub-Riemannian geodesics...

Geometry of PDEs
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SUB-RIEMANNIAN MANIFOLDS

@ (-, -)oifj is an inner product on iff;
@ (-, )yir its extension to vit.
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SUB-RIEMANNIAN MANIFOLDS

@ (-, -)oifj is an inner product on iff;

@ (-, )yir its extension to vit.

g is a Riemannian metric on TDiff S! obtained by left actions of
Diff 51 of <', ‘>Diff;

A -

g is a Riemannian metric on T Vir obtained by left actions of Vir of
('7 '>Uit;

hg= restriction of g to Vp;

©

(2

©

©

hy= restriction of g to V;
h= restriction of § to &

(2
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SUB-RIEMANNIAN MANIFOLDS

@ (-, -)oifj is an inner product on iff;
@ (-, )yir its extension to vit.

@ g is a Riemannian metric on TDiff S! obtained by left actions of
Diff 51 of <', ‘>Diff;

® g is a Riemannian metric on TVir obtained by left actions of Vir of
('7 '>Uit;

hg= restriction of g to Vp;

h= restriction of § to &

o

@ hy= restriction of g to Vy;

o

o Manifolds (Diff S,Vy, hg), (Diff S*, V1, hy), and (Vir,£, h).

A.Vasil'ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs 21 /38



SUB-RIEMANNIAN MANIFOLDS

@ V-horizontal curves 7(t) connecting two points ag and aj, 7(0) = ap,

7(1) = a; on Diff S;

@ Energy functional
1
EG) = [ ()
0
o Critical values in the space of horizontal curves= geodesics;

Problem: oo-dimensional manifolds.
Treatment: prof. Markina's talk:

A.Vasil'ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs
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SUB-RIEMANNIAN MANIFOLDS

@ V-horizontal curves 7(t) connecting two points ag and aj, 7(0) = ap,
7(1) = a; on Diff S;

@ Energy functional

1
EG) =3 | hei)de

o Critical values in the space of horizontal curves= geodesics;

Problem: oo-dimensional manifolds.
Treatment: prof. Markina's talk:
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TREATMENT

@ Convenient calculus (most general notion of smoothness, smooth
curves): A. Kriegl and P. W. Michor;
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TREATMENT

@ Convenient calculus (most general notion of smoothness, smooth
curves): A. Kriegl and P. W. Michor;

@ Regular Lie groups: Omori, Maeda, Yoshioka (1980), Milnor (1984):

» Lie group G modeled on a convienient vector space with the Lie
algebra g;

» {, is left multiplication by an element a € G;

» Left Maurer-Cartan form k‘ is a g-valued one-form on G given by

K(v) =dl, v, v e T,G;

» The left logarithmic derivative of y is a smooth curve u(t) = k(¥(t));
» G is regular if v <> u is one-to-one.

Our groups Diff S and Vir=Diff S ® R are regular.
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LEFT LOGARITHMIC DERIVATIVE

o For ~(t) C Diff S! the left Maurer-Cartan form is

o For (7(t), b(t)) CVir the left Maurer-Cartan form is

() = KEG3(2), b(2)) = (% cm) ,

where
C(t) = b(e) — - /% u(t)dg + 2 /27r u(t)dy(t)+
41 47
v (% , ,
+E ; u'(t)dlog~'(t)

25 / 38



EULER-ARNOLD EQUATIONS

@ Assume G is a Lie group with the Lie algebra g, and (-, -) is defined
ong;
@ ady : y — [x, y] exists for any x € g;

e ad] to ad,.

THEOREM (GRONG, MARKINA, A. V.)

Assume g = b @ b, where b is the orthogonal complement to b with
respect to (-,-). If a horizontal curve ~y is a geodesic, then it is either a
semi-rigid curve or it is a normal geodesic. In the latter case it is a
solution to the equations

u=r'(%), i = pry ad) (u+ ), A= PryL ad,) (u+ ),

for some curve \ in ht.

Here pry : g — € is the orthogonal projection with respect to (-, -).
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SUBGROUP-INVARIANT METRIC

@ Special case G has a subgroup K, g =h @ ¢, and h = &1,
@ Metric g is invariant under K;

o (for finite-dimensional K, equivalently, (-,-) is ad(€)-invariant).

THEOREM (GMV)

i = pry, ad,) (u+ ), and A= constant.

A.Vasil'ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs
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SOBOLEV METRIC

We work with Diff S!:
@ On Vectg = kern, nx = % fozﬂ x(0)do, x € Vect S! = 0iff define

of 1 2w

y)e” = o i (ax(8)y(8) + Bx'(0)y'(8))d6 = (x, Lagy)*™°,

Logx = ﬁagx — ax.
Extend (X,y)S‘ﬁ to (x,y)*? on Vect S*:

o8 —{

8
(x,y) X =1y —Ny)g + Ny

A.Vasil'ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs 28 / 38



(GEODESIC EQIATIONS

Principal bundle Rot—sDiff S ™% T = Diff S!/Rot.

@ The sub-Riemannian geodesic equation for v: [0,1] — Diff S* with
the base space Diff S!/Rot is

Bu" — i = B(ud” + 2u'v") = 3aud’ — 22X\, u(t) = l,
Y

Particular cases
@ =1, 3 =0 = Riemann equation & = 3uu’ + 2\u’;
o a =0, 8 =1 = Hunter-Saxton equation &’ = uu" + 2u'u" — 2\u/;

o a =1, =1 = Camassa-Holm equation

. . n /1N / /
d" — 0 =ud" + 240" —3ud —2)\.
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VIRASORO-BOTT GROUP

We work with Vir: X
Principal bundle Rot x R—Vir =% T = Diff S /Rot.

@ Extention of the Sobolev metric:

((x,a1). (v, @) = (x, %)% + a1az.

o Particular case a =1, =0 = KdV:

0 =3ud + (2A1 — Aop)u' + Xovd”.

(A1 =0, X2 =1, p =0, v=1- classical KdV)
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Diff S! AND F

@ Ay the space of analytic functions in D, F(0) = 0, which is
C>®-smooth on D = DU S;

o Ag— is a complex Fréchet vector space with the topology defined by

seminorms
IFllm = sup{|F"™)(2)| | z €D}

o Fy C Ag open subset;
o Diff 51/51 >~ .7'—0.
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VELLING-KIRILLOV AND WEIL-PETERSSON METRICS

@ For any smooth curve f; in Fy with fy = idp we can write
fi(z) = z + tzF(z) + o(t), F e Ao;

o Velling-Kirillov metric Fo C Ag, TigyFo =~ Ao;
basl i, (1. F2) = = [ | (oFiFs + BRI GY ) doa)
— Z(an + 5n3)an5n;
n=1

Fi(z) = 32021 anz", Fa(2) = 3002 baz".
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VELLING-KIRILLOV AND WEIL-PETERSSON METRICS

@ For any smooth curve f; in Fy with fy = idp we can write
fi(z) = z + tzF(z) + o(t), F e Ao;

o Velling-Kirillov metric Fo C Ag, TigyFo =~ Ao;
basl i, (1. F2) = = [ | (oFiFs + BRI GY ) doa)
— Z(an + 5n3)an5n;
n=1

Fi(z) =3 021 anz", Fo(z) = Y02 bnz".
o o =1 and § = 0 = Weil-Petersson metric;
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TEICHMULLER CURVE (KIRILLOV MANIFOLD)

e Principal bundle Rot—Diff ST =% T
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TEICHMULLER CURVE (KIRILLOV MANIFOLD)

e Principal bundle Rot—Diff ST =% T

o J is the Hilbert transform;
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TEICHMULLER CURVE (KIRILLOV MANIFOLD)

@ Principal bundle Rot—Diff st 7A';
o J is the Hilbert transform;

o Los = B03 — a (Hill operator);
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TEICHMULLER CURVE (KIRILLOV MANIFOLD)

@ Principal bundle Rot—Diff st 7A';
o J is the Hilbert transform;

o Los = B03 — a (Hill operator);

THEOREM (GMV)

If v is a normal geodesic in the Velling-Kirillov metric with the logarithmic
derivative u(t) = k'(¥(t)), then

Lang’ = uLagJu" + 2u'La5Ju' +2\, AMER.

For (o, 8) = (1,0), this is a special case of the modified
Constantin-Lax-Majda (CLM) equation.
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TEICHMULLER SPACE

@ Principal bundle Mob—Diff ST ™% T;

THEOREM (GMV)

If v is a normal geodesic in the Weil-Petersson metric with the logarithmic
derivative u(t) = k'(¥(t)), then

Loy1Jdi’ + X =ad] (L 110" + N).

A in no longer constant and we must solve an additional equation.
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DiscussioN

The equation

LQBJU' = uLagJu" + 2u'La5Ju' +2\, AER

is equivalent to

/// "

—|—v—uv

+ v 20" 420V 4200+ uN = 3i(Wey — wire ),

where v = Ju, A = X\g + we'? + we 0 W = 3iwey,
co(t) is an arbitrary function || < 2.
For example w =0, A = XA

"

Vv ="+ " + 20V 20 + 200
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CONTROLLABILITY

@ No Chow-Rashevskil theorem in general;

THEOREM (YURII LEDYAEV, 2004)

If M is an infinite-dimensional manifold modelled on a Hilbert space, if V
is a bracket generating distribution, then for any pair of points ag,a; € M
there is a sequence of horizontal curves v, € Cy(ag.a1), such that

Yn(0) = a0, Va(1) — a1.
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CONTROLLABILITY

o Generalization of Ledyev's theorem to Fréchet manifolds (lrina
Markina and Mahdi Salehani);

o For both
Moéb—sDiff ST "5 T

and
Rot—Diff St =% T

we proved complete controllability (Erlend Grong, Irina Markina, and
AV.).
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DEKUJU MNOHOKRAT

Na zdravi!
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