
Sub-Riemannian geodesic equations on the
Virasoro-Bott group

Alexander Vasil’ev

(joint work with Erlend Grong and Irina Markina)

University of Bergen, Norway

Geometry of PDEs and Integrability
October 18th, 2013

A.Vasil’ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs 1 / 38



Shape morphing

Morphing between Bush and Obama
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Shape morphing

How does one compare a rabbit and a girl? How do we transform a rabbit
to a girl?
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Factorization

Rabbits...
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Comparing shapes

Hausdorff distance (1914)

dH(X ,Y ) = max{sup
x∈X

inf
y∈Y

d(x , y), sup
y∈Y

inf
x∈X

d(x , y)}.

First template and image are pre-processed via an edge detector (pattern
recognition).

Lack of structure morphing between shapes.
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Motion in the space of shapes

Deterministic or stochastic (D. Mumford, ICM 2002 plenary lecture)

How do we tune shapes (forgetting shift, rotation, and scaling)?

How do we compare shapes? (Hausdorff distance is not satisfactory!)

We will find sub-Riemannian geodesic equations for morphing one shape to
another on the Virasoro-Bott group as a space of shapes with the
distribution provided by the Teichmüller space and curve.

A.Vasil’ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs 6 / 38



Motion in the space of shapes

Deterministic or stochastic (D. Mumford, ICM 2002 plenary lecture)

How do we tune shapes (forgetting shift, rotation, and scaling)?

How do we compare shapes? (Hausdorff distance is not satisfactory!)

We will find sub-Riemannian geodesic equations for morphing one shape to
another on the Virasoro-Bott group as a space of shapes with the
distribution provided by the Teichmüller space and curve.

A.Vasil’ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs 6 / 38



Conformal welding

0

D Ω

Γ

f (z) = c0 + c1z + c2z
2 + . . .

g(z) = a1z + a0 + a−1
1
z
+ . . .
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Conformal welding

Factorization:

0

η

ξ

D

S1

1 0

y

Ω

Γ

f (z) = z + c2z
2 + . . .

g(z) = a1z + a0 + a−1
1
z
+ . . .

By F0 we denote the class of all conformal embeddings of the unit
disk D to C normalized as f (z) = z + c2z

2 + . . . , and C∞-smooth on
the boundary S1 = ∂D.
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g(z) = a1z + a0 + a−1
1
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γ = f −1 ◦ g |S1 ∈ Diff S1/Rot— ‘fingerprints’;

f ∈ F0 ⇆ γ ∈ Diff S1/Rot;

Kirillov manifold= smooth Teichmüller curve.
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Conformal welding

Factorization:
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Ω

Γ

f (z) = c0 + c1z + c2z
2 + . . .

g(z) = z + a−1
1
z
+ . . .

By G0 we denote the class of all conformal embeddings of the exterior
of the unit disk D

− to Ĉ with the hydrodynamics normalisation
normalized as g(z) = z + a−1

z
+ . . . , and C∞-smooth on the

boundary S1 = ∂D.
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Conformal welding
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γ = f −1 ◦ g |S1 ∈ Diff S1/Möb, g ∈ G0 ⇆ γ ∈ Diff S1/Möb;

Smooth Teichmüller manifold.
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Virasoro-Bott group

Witt algebra

Vect S1– Lie algebra of smooth vector fiels on S1;

It can be identified with the Lie algebra diff S1;

Lie bracket [ϕ1(θ)∂θ, ϕ2(θ)∂θ] = (ϕ′
1ϕ2 − ϕ′

2ϕ1)∂θ;

If {−ie ikθ}k∈Z is a complex Fourier basis, then

[−ie imθ∂θ,−ie inθ∂θ] = −i(n−m)e i(n+m)θ∂θ;

or

Lk = −ie imθ∂θ =⇒ [Lm, Ln] = (n −m)Ln+m– Witt relation.
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Virasoro-Bott group

Virasoro algebra

vir = Vect S1 ⊕ R:

(ϕ, c) ∈ vir ⇒ [(ϕ1, c1), (ϕ2, c2)]vir =
(

[ϕ1, ϕ2],
c
12ωµν(ϕ1, ϕ2)

)

,

Gelfand-Fuchs cosycle is unique non-trivial:

ωµν(ϕ1, ϕ2) =
1

2π

∫ 2π

0

(

µϕ1ϕ
′
2 + νϕ′

1ϕ
′′
2

)

dθ;

ωµν(L−n, Ln) = n(µ+ νn2).

Virasoro commutation relations:

[Lm, Ln]vir = (n −m)Ln+m +
c

12
n(µ+ νn2)δn,−m.

c– central charge.
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Virasoro-Bott group

Virasoro-Bott group

Vir= Diff S1 × R:

(φ, a) ∈Vir ⇒
(φ1, a1) ◦ (φ2, a2) =

(

(φ1 ◦ φ2), a1 + a2 +
c
12Ωµν(φ1, φ2)

)

;
(here we use the covering space for Diff S1)

Thurston-Bott cosicle:

Ωµν(φ1, φ2) = µA(φ1, φ2) + νB(φ1, φ2);

Extensions are non-trivial if and only if ν 6= 0.
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Coadjoint representation

We will work with Diff S1 and Virasoro-Bott group Vir=Diff S1 ⊕ R;

Classification of orbits in the coadjoint representation of Vir;

Diff S1/Möb and Diff S1/Rot carry the structure of
infinite-dimensional, homogeneous, complex analytic Kählerian
manifolds (after complexification).

Diff S1/Möb is a smooth approximation of the universal Teichmüller
space T ;

Diff S1/Rot is a smooth approximation of the universal Teichmüller
curve T̂ = complex line bundle over T ;

Fibration π : T̂ → T with typical fiber Möb/S1 ≃ D
− = {|z | > 1}.
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Fréchet manifolds

Diff S1 is a Lie-Fréchet group;

T̂ = Diff S1/Rot and T = Diff S1/Möb are Fréchet homogeneous
manifolds.

Diff S1 acts on T̂ and T ;

T̂ is a base space for the principal bundle Rot−→Diff S1 π0−→ T̂ ;

T is a base space for the principal bundle Möb−→Diff S1 π1−→ T .

Analogously, for Diff S1 ⊕ R.
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Lie-Fréchet algebras

The Lie algebra of Diff S1 is the Witt algebra diff ≃ Vect S1;

Real-valued form

η0(v) =
1

2π

∫ 2π

0
v(θ)dθ;

Complex-valued form

η1(v) =
1

2π

∫ 2π

0
e−iθv(θ)dθ.

v0 = ker η0 and v1 = ker η0 ∩ ker η1;

Vect S1 = v0 ⊕ rot = v1 ⊕möb.

A.Vasil’ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs 17 / 38
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Lie-Fréchet algebras

The Lie algebra of Vir is the Virasoro algebra vircµν ;

Real-valued form is the same η0(v)

e = (ker η0, 0) and k = (a0∂θ, b) = (rot, b);

Then virµν = e⊕ k.
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Sub-bundles for TDiff S
1

V0 = left translations of v0 by Diff S1;

V1 = left translations of v1 by Diff S1;

R = ker dπ0, M = ker dπ1;

TDiff S1 = V0 ⊕R = V1 ⊕M;

Sub-bundles V0 and V1 are Ehresmann connections.
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Sub-bundle for TVir

E = left translations of e by Vir;

R = ker dπ0;

TVir= E ⊕ (R× R);
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Sub-Riemannian manifolds

〈·, ·〉diff is an inner product on diff;

〈·, ·〉vir its extension to vir.

g is a Riemannian metric on TDiff S1 obtained by left actions of
Diff S1 of 〈·, ·〉diff;

ĝ is a Riemannian metric on TVir obtained by left actions of Vir of
〈·, ·〉vir;

h0= restriction of g to V0;

h1= restriction of g to V1;

ĥ= restriction of ĝ to E

Manifolds (Diff S1,V0,h0), (Diff S1,V1,h1), and (Vir,E , ĥ).
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Manifolds (Diff S1,V0,h0), (Diff S1,V1,h1), and (Vir,E , ĥ).
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Sub-Riemannian manifolds

V-horizontal curves γ(t) connecting two points a0 and a1, γ(0) = a0,
γ(1) = a1 on Diff S1;

Energy functional

E (γ) =
1

2

∫ 1

0
h(γ̇, γ̇)dt;

Critical values in the space of horizontal curves= geodesics;

Problem: ∞-dimensional manifolds.
Treatment: prof. Markina’s talk:
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Treatment

Convenient calculus (most general notion of smoothness, smooth
curves): A. Kriegl and P. W. Michor;

Regular Lie groups: Omori, Maeda, Yoshioka (1980), Milnor (1984):
◮ Lie group G modeled on a convienient vector space with the Lie

algebra g;
◮ ℓa is left multiplication by an element a ∈ G ;
◮ Left Maurer-Cartan form κℓ is a g-valued one-form on G given by

κℓ(v) = dℓa−1v , v ∈ TaG ;

◮ The left logarithmic derivative of γ is a smooth curve u(t) = κℓ(γ̇(t));
◮ G is regular if γ ↔ u is one-to-one.

Our groups Diff S1 and Vir=Diff S1 ⊕ R are regular.
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Left logarithmic derivative

For γ(t) ⊂ Diff S1 the left Maurer-Cartan form is

u(t) = κℓ(γ̇(t)) =
γ̇

γ′
;

For (γ(t), b(t)) ⊂Vir the left Maurer-Cartan form is

û(t) = κℓ(γ̇(t), ḃ(t)) =

(

γ̇

γ′
,C (t)

)

,

where

C (t) = ḃ(t)−
µ

4π

∫ 2π

0
u(t)dθ +

µ

4π

∫ 2π

0
u(t)dγ(t)+

+
ν

4π

∫ 2π

0
u′(t)d log γ′(t).
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Euler-Arnold equations

Assume G is a Lie group with the Lie algebra g, and 〈·, ·〉 is defined
on g;

adx : y 7→ [x , y ] exists for any x ∈ g;

ad⊤x to adx .

Theorem (Grong, Markina, A. V.)

Assume g = h⊕ h⊥, where h⊥ is the orthogonal complement to h with

respect to 〈·, ·〉. If a horizontal curve γ is a geodesic, then it is either a

semi-rigid curve or it is a normal geodesic. In the latter case it is a

solution to the equations

u = κℓ(γ̇), u̇ = prh ad
⊤
u (u + λ), λ̇ = prh⊥ ad⊤u (u + λ),

for some curve λ in h⊥.

Here prk : g → k is the orthogonal projection with respect to 〈·, ·〉.
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Subgroup-invariant metric

Special case G has a subgroup K , g = h⊕ k, and h = k⊥;

Metric g is invariant under K ;

(for finite-dimensional K , equivalently, 〈·, ·〉 is ad(k)-invariant).

Theorem (GMV)

u̇ = prh ad
⊤
u (u + λ), and λ= constant.
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Sobolev metric

We work with Diff S1:

On Vect0 = ker η, ηx = 1
2π

∫ 2π
0 x(θ)dθ, x ∈ Vect S1 = diff define

〈x , y〉αβ0 :=
1

2π

∫ 2π

0
(αx(θ)y(θ) + βx ′(θ)y ′(θ))dθ = 〈x , Lαβy〉

1,0,

Lαβx = β∂2
θx − αx .

Extend 〈x , y〉αβ0 to 〈x , y〉αβ on Vect S1:

〈x , y〉αβ =
〈

x − ηx , y − ηy
〉αβ

0
+ ηxηy .
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Geodesic eqiations

Principal bundle Rot−→Diff S1 π0−→ T̂ = Diff S1/Rot.

The sub-Riemannian geodesic equation for γ : [0, 1] → Diff S1 with
the base space Diff S1/Rot is

βu̇′′ − αu̇ = β(uu′′′ + 2u′u′′)− 3αuu′ − 2λu′, u(t) =
γ̇

γ′
.

Particular cases

α = 1, β = 0 =⇒ Riemann equation u̇ = 3uu′ + 2λu′;

α = 0, β = 1 =⇒ Hunter-Saxton equation u̇′′ = uu′′′ + 2u′u′′ − 2λu′;

α = 1, β = 1 =⇒ Camassa-Holm equation

u̇′′ − u̇ = uu′′′ + 2u′u′′ − 3uu′ − 2λu′.
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Virasoro-Bott group

We work with Vir:

Principal bundle Rot× R−→Vir
π̂0−→ T̂ = Diff S1/Rot.

Extention of the Sobolev metric:

〈(x , a1), (y , a2)〉
αβ
µν = 〈x , y〉αβ + a1a2.

Particular case α = 1, β = 0 =⇒ KdV:

u̇ = 3uu′ + (2λ1 − λ2µ)u
′ + λ2νu

′′′.

(λ1 = 0, λ2 = 1, µ = 0, ν = 1– classical KdV)
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Diff S
1 and F0

A0– the space of analytic functions in D, F (0) = 0, which is
C∞-smooth on D̂ = D ∪ S1;

A0– is a complex Fréchet vector space with the topology defined by
seminorms

‖F‖m = sup{|F (m)(z)| | z ∈ D̂};

F0 ⊂ A0 open subset;

Diff S1/S1 ≃ F0.
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Velling-Kirillov and Weil-Petersson metrics

For any smooth curve ft in F0 with f0 = idD we can write

ft(z) = z + tzF (z) + o(t), F ∈ A0;

Velling-Kirillov metric F0 ⊂ A0, TidDF0 ≃ A0;

bαβ
∣

∣

idD
(F1,F2) =

1

π

∫∫

D

(

αF ′
1F

′

2 + β(zF ′
1)

′(zF ′
2)

′

)

dσ(z),

=

∞
∑

n=1

(αn + βn3)anbn;

F1(z) =
∑

∞

n=1 anz
n, F2(z) =

∑

∞

n=1 bnz
n.

α = 1 and β = 0 ⇒ Weil-Petersson metric;
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ft(z) = z + tzF (z) + o(t), F ∈ A0;

Velling-Kirillov metric F0 ⊂ A0, TidDF0 ≃ A0;

bαβ
∣

∣

idD
(F1,F2) =

1

π

∫∫

D

(

αF ′
1F

′

2 + β(zF ′
1)

′(zF ′
2)

′

)

dσ(z),

=

∞
∑

n=1

(αn + βn3)anbn;

F1(z) =
∑

∞

n=1 anz
n, F2(z) =

∑

∞

n=1 bnz
n.

α = 1 and β = 0 ⇒ Weil-Petersson metric;
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Teichmüller curve (Kirillov manifold)

Principal bundle Rot−→Diff S1 π0−→ T̂ ;

J is the Hilbert transform;

Lαβ = β∂2
θ − α (Hill operator);

Theorem (GMV)

If γ is a normal geodesic in the Velling-Kirillov metric with the logarithmic

derivative u(t) = κℓ(γ̇(t)), then

LαβJu̇
′ = uLαβJu

′′ + 2u′LαβJu
′ + 2λu′, λ ∈ R.

For (α, β) = (1, 0), this is a special case of the modified
Constantin-Lax-Majda (CLM) equation.
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Teichmüller space

Principal bundle Möb−→Diff S1 π1−→ T ;

Theorem (GMV)

If γ is a normal geodesic in the Weil-Petersson metric with the logarithmic

derivative u(t) = κℓ(γ̇(t)), then

L−1,1Ju̇
′ + λ̇ = ad⊤u (L−1,1u

′ + λ).

λ in no longer constant and we must solve an additional equation.
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Discussion

The equation

LαβJu̇
′ = uLαβJu

′′ + 2u′LαβJu
′ + 2λu′, λ ∈ R

is equivalent to

v̇ ′′′+ v̇ ′ = uv ′′′′+uv ′′+2u′v ′′′+2u′v ′+2λu′+uλ′−3i(w̄c2−wc̄2e
−iθ),

where v = Ju, λ = λ0 + we iθ + w̄e−iθ, ẇ = 3i w̄c2,
c2(t) is an arbitrary function |c2| < 2.
For example w = 0, λ ≡ λ0

v̇ ′′′ + v̇ ′ = uv ′′′′ + uv ′′ + 2u′v ′′′ + 2u′v ′ + 2λu′

A.Vasil’ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs 35 / 38



Controllability

No Chow-Rashevskĭı theorem in general;

Theorem (Yurĭı Ledyaev, 2004)

If M is an infinite-dimensional manifold modelled on a Hilbert space, if V
is a bracket generating distribution, then for any pair of points a0, a1 ∈ M

there is a sequence of horizontal curves γn ∈ CV(a0.a1), such that

γn(0) = a0, γn(1) → a1.
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Controllability

Generalization of Ledyev’s theorem to Fréchet manifolds (Irina
Markina and Mahdi Salehani);

For both
Möb−→Diff S1 π1−→ T

and
Rot−→Diff S1 π0−→ T̂

we proved complete controllability (Erlend Grong, Irina Markina, and
A.V.).

A.Vasil’ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs 37 / 38



Děkuju mnohokrát

Na zdrav́ı!

A.Vasil’ev (Bergen) Sub-Riemannian geodesics... Geometry of PDEs 38 / 38


