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The Kawahara equation

The Kawahara equation, see Kawahara ’72, Gandarias et. al.
’17 and references therein, reads

ut = µu5x + γuxxx + βu2ux + αuux, (1)

where α, β, γ, µ are constants, µ 6= 0 and uα + β 6= 0.

By
rescaling t we can WLOG set µ = 1.

Equation (1) has a number of applications in physics, in
particular in the study of plasma waves and water waves, cf.
Kawahara ’72, Gandarias et. al. ’17 and references therein.
We consider the following generalization of (1) with µ = 1:

ut = u5x + buxxx + f(u)ux, (2)

where b is a constant and f is a function of u.
We shall refer to (2) as to GKE.
Blanket assumption: the function f is nonconstant (so GKE
is necessarily nonlinear).
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More on the Kawahara equation

The authors Gandarias et. al. ’17 considered a slightly broader
generalization of (1) than GKE (2), namely,

ut = a(t)u5x + b(t)uxxx + c(t)f(u)ux, (3)

but they study only its Lie point symmetries and low-order
conservation laws.

On the other hand, we obtain below a complete description of
generalized symmetries and local conservation laws of all
orders for GKE (2).
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Preliminaries

Consider an evolution equation in two independent and one
dependent variable of the form

ut = K(x, u, ux, . . . , unx), n ≥ 2, (4)

where ujx = ∂ju/∂xj.

Following mostly Krasil’shchik and Verbovetsky ’11, Mikhailov
et. al. ’87 and ’09 and Olver ’93 we recall the basic notions
we need.
Let Dx and Dt be total derivatives in x and t restricted to (4),
that is:

Dx =
∂

∂x
+
∞∑
i=0

u(i+1)x
∂

∂uix
, Dt =

∂

∂t
+
∞∑
i=0

Di
x(K)

∂

∂uix
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Jakub Vaš́ıček Generalization of Kawahara equation 4 / 23



Preliminaries

Consider an evolution equation in two independent and one
dependent variable of the form

ut = K(x, u, ux, . . . , unx), n ≥ 2, (4)

where ujx = ∂ju/∂xj.
Following mostly Krasil’shchik and Verbovetsky ’11, Mikhailov
et. al. ’87 and ’09 and Olver ’93 we recall the basic notions
we need.
Let Dx and Dt be total derivatives in x and t restricted to (4),
that is:

Dx =
∂

∂x
+
∞∑
i=0

u(i+1)x
∂

∂uix
, Dt =

∂

∂t
+
∞∑
i=0

Di
x(K)

∂

∂uix
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Local functions

A local function Q in our context is a function that may
depend on x, t, u, ux, . . . , ukx for an arbitrary but finite order k.

Definition 1

A function f(x, t, u, . . . , us) is a rational local function if and
only if it can be written as f = g/h where g, h are local
functions polynomial in all their arguments.

We shall denote the field of rational local functions by A0.
Let A be an extension of A0 such that K ∈ A and A is
closed under Dx and Dt, cf. Mikhailov ’09.
We shall further refer to the elements of A as to differential
functions. Unless explicitly stated otherwise all functions
below are assumed to belong to A .
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Symmetries and formal series

An evolutionary vector field vQ = Q∂/∂u with the charac-
teristic Q ∈ A is a generalized symmetry of (4) iff Q satisfies

Dt(Q) = DK(Q). (5)

Here, for F = F (x, t, u, ux, . . . , ukx) ∈ A

DF =
k∑
i=0

∂F

∂ui
Di
x. (6)

Consider an algebra L of formal series (Kupershmidt ’00):

L =
k∑

i=−∞

aiξ
i, ai ∈ A . (7)

For L (7) define its degree deg L = k assuming ak 6= 0 with
the convention that deg 0 = −∞.

Jakub Vaš́ıček Generalization of Kawahara equation 6 / 23



Symmetries and formal series

An evolutionary vector field vQ = Q∂/∂u with the charac-
teristic Q ∈ A is a generalized symmetry of (4) iff Q satisfies

Dt(Q) = DK(Q). (5)

Here, for F = F (x, t, u, ux, . . . , ukx) ∈ A

DF =
k∑
i=0

∂F

∂ui
Di
x. (6)

Consider an algebra L of formal series (Kupershmidt ’00):

L =
k∑

i=−∞

aiξ
i, ai ∈ A . (7)

For L (7) define its degree deg L = k assuming ak 6= 0 with
the convention that deg 0 = −∞.
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More on formal series

The multiplication of two monomials is defined by the formula

aξi ◦ bξj = a
∞∑
k=0

i(i− 1) · · · (i− k + 1)

k!
Dk
x(b)ξ

i+j−k.

For L =
∑q

i=−∞ aiξ
i its formal adjoint is

L∗ =

q∑
i=−∞

(−ξ)i ◦ ai.

Let L ∈ L , L =
∑k

i=−∞ aiξ
i, have degL = k > 0. The k-th

root L1/k of L is a formal series of degree one of the form

L1/k =
1∑

i=−∞

āiξ
i, ãi ∈ A

such that L1/k ◦ L1/k ◦ · · · ◦ L1/k︸ ︷︷ ︸
k times

= L.
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āiξ
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Formal symmetries

Definition 2

Let ut = K, where K ∈ A be an n-th order differential
equation. A formal symmetry of rank k for this equation is a
formal series L ∈ L of degree m which satisfies

deg(Dt(L)− [D̂K , L]) ≤ m+ n− k, (8)

where D̂K is defined as D̂K =
∑n

i=0
∂K
∂ui
ξi.

For a local function f we define its order ord f=deg D̂f .

Lemma 3

If G is a characteristic of generalized symmetry of order q for
ut = K then D̂G is a formal symmetry of degree q and rank at
least q for this equation.
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Conservation laws

Any local conservation law for (4) can WLOG be assumed
(Olver ’93) to read

Dt(ρ) = Dx(σ), ρ, σ ∈ A , (9)

where ρ is called the density and σ the flux.

Definition 4

The characteristic of a conservation law (9) for (4) is a
function P ∈ A , which satisfies

Dt(ρ)−Dx(σ) = P · (ut −K).

The conservation law is called trivial if it has zero
characteristic. For any trivial conservation law we have
ρ = Dx(ζ) and σ = Dt(ζ) for some ζ ∈ A .
In what follows we tacitly assume that the conservation laws
are considered modulo trivial ones.
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More on conservation laws

Proposition

The characteristic P ∈ A of a conservation law satisfies

Dt(P ) + D∗K(P ) = 0, (10)

where for any differential operator in total derivatives
P =

∑q
i=0 piD

i
x of order q and pi ∈ A we define its formal

adjoint as
P∗ =

q∑
i=0

(−Dx)
i ◦ pi.

Solutions of (10) are called cosymmetries. Cosymmetry defines
a characteristic of a conservation law iff it lies in the image of

variational derivative δ/δu where
δ

δu
H =

∞∑
i=1

(−Dx)
i

(
∂H

∂ui

)
.
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Jakub Vaš́ıček Generalization of Kawahara equation 10 / 23



More on conservation laws II
Definition 5

A system of evolution partial differential equations is said to
be Hamiltonian if it can be rewritten in the following form:

∂u

∂t
= DδH . (11)

where D is a Hamiltonian differential operator, δ is the
operator of variational derivative and H =

∫
H dx, where

H ∈ A and δH = δ
δu
H, is usually referred to as the

Hamiltonian functional, or just the Hamiltonian.

Proposition

Consider a Hamiltonian equation in the form (11) and let (9)
define a conservation law. Then D (δρ/δu) is a characteristic
of a symmetry of this equation.
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Main result

The following result has important implications for existence of
symmetries and cosymmetries.

Theorem 6

Generalized Kawahara equation (2), that is,

ut = u5x + buxxx + f(u)ux,

where b is a constant and f is a function of u, has no
nontrivial formal symmetry of rank 13 or greater.

By Lemma 3 this theorem implies that GKE has no generalized
symmetries of order greater than 12, so it cannot have an
infinite hierarchy of generalized symmetries of increasing
orders and therefore is not symmetry integrable.
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Formal symmetries – outline of proof I

Seeking a contradiction suppose ∃L ∈ L with deg L 6= 0,
which is a formal symmetry of rank 13. That is:

deg (Dt(L)− [D̂K , L]) ≤ degL+ deg D̂K − 13. (12)

WLOG we set degL = 1, so L = gξ +
∑∞

i=0 liξ
−i, and

g, li ∈ A . Then equation (12) will boil down to

deg(Dt(L)− [D̂K , L]) ≤ −7. (13)

We need to equate to zero the coefficients at ξi. The first
nontrivial equation occurs for i = 5 we get

−5Dx(g) = 0.

⇒ g is an arbitrary function of t only. Likewise we get
lj = lj(t), j = 0,−1,−2.
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Formal symmetries – outline of proof II

For i = 1, . . . ,−2 we get slightly more complicated equations,
namely

− 5Dx(li−4) = Fi (14)

Recall that a necessary condition for this kind of equations to
be solvable in the class of local functions is that the equality
δFi/δu = 0 holds.
The first case when the condition δFi/δu = 0 is nontrivial
appears for i = −3. We have to solve the following system

− 1

5
g
∂3f

∂u3
= 0,

3

25

∂f

∂u

∂g

∂t
= 0. (15)

The first equation tells us that if ∂3f/∂u3 6= 0 we arrive at a
contradiction with our initial assumption, because in this case
g would have to be zero.
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Formal symmetries – outline of proof III

Now turn to a case when ∂3f/∂u3 = 0. By assumption
∂f/∂u 6= 0 so

∂g

∂t
= 0 ⇒ g = C1.

For i = −4 the condition δF−4/δu = 0 yields
∂l0
∂t

= 0, so l0 is

a constant. Constants are however trivial formal symmetries to
any evolution equation so we put l0 = 0.

For i = −5,−6 we have ∂lj/∂t = 0, for j = 1, 2 so we obtain
that l1 and l2 are constants.

Finally for i = −7 we obtain the system which contains,
among other, the equation g = C1 = 0.

This expresses the vanishing of the leading term of L and
therefore contradicts the initial assumption that degL = 1 and
hence the proof is completed.
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Symmetries I

By Theorem 6 which we just proved GKE, that is,

ut = u5x + buxxx + f(u)ux,

has no formal symmetries of rank 13 or greater. Now by
Lemma 3 this implies that GKE has no generalized symmetries
of order greater than 9. This result can be further
strengthened as follows:

Theorem 7

GKE admits only generalized symmetries which are equivalent
to Lie point ones, i.e., it has no genuinely generalized
symmetries.

With this in mind we can readily obtain a complete description
of generalized symmetries of GKE.
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Symmetries II

Theorem 8

1) If f is an arbitrary function of u such that u∂f
∂u

, ∂f
∂u

and 1
are not linearly dependent, then GKE has just two linearly
independent symmetries with the characteristics
Q1 = u5x + buxxx + fux and Q2 = ux.

2) If u∂f
∂u

, ∂f
∂u

and 1 are linearly dependent we have two cases:

i) if ∂
2f
∂u2

= 0,
that is, f = αu+ β, where α, β are constants, α 6= 0,
then GKE admits, in addition to two symmetries listed in
1), a symmetry with the characteristic Q3 = tux + 1/α;

ii) if ∂
2f
∂u2
6= 0, so f = γ ln(u+ c) + δ,

where γ, δ and c are constants, γ 6= 0, then GKE
admits, in addition to the two symmetries listed in 1), a
symmetry with the characteristic Q4 = tux + (u+ c)/γ.
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Conservation laws I

Theorem 9

GKE admits only local conservation laws with the
characteristics of order not greater than four.

Sketch of the proof. Recall, see e.g. Gandarias et. al. ’17,
that GKE (2) admits a Hamiltonian operator D = Dx. In
particular this implies that applying the operator D to a
characteristic P of a conservation law yields a characteristic of
a symmetry of order higher by one than that of P , so we have
to consider only conservation laws with order one less than the
greatest order of previously found symmetries which was five
(cf. Vodová ’16 for a similar argument).

Thus, the most
general conservation law for GKE has a characteristic of the
form P = P (x, t, u, ux, uxx, uxxx, u4x).
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Conservation laws II

Theorem 10

If ∂2f
∂u2
6= 0, then GKE ut = u5x + buxxx + f(u)ux has just

three linearly independent local conservation laws with
conserved densities

ρ1 = u, ρ2 = u2 and ρ3 = (1/2)u2xx − (1/2)bu2x + r̂,

where r̂(u) is defined by the formula ∂r̂/∂u = r(u) and
∂r/∂u = f , with associated fluxes
σ1 = (1/2)∂f

∂u
u2 + uxxb+ u4x,

σ2 = uu4x−uxxxux+(1/2)u2xx+buuxx−(1/2)bu2x+(1/3)∂f
∂u
u3

σ3 = −fbu2x + ∂f
∂u
u2xuxx − b2uxuxxx + (1/2)u2xxb

2 + rbuxx −
fuxuxxx + fu2xx + 2bu4xuxx − bu5xux − u2xxxb+ (1/2)r2 +
ru4x + (1/2)u24x − u5xuxxx + uxxu6x
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Conservation laws III

Theorem 11

If ∂2f
∂u2

= 0, so f = αu+ β with α 6= 0, then GKE admits, in
addition to the local conservation laws listed in the previous
theorem, a local conservation law with the conserved density
ρ4 = xu+ (1/2)αtu2 and associated flux
σ4 = (1/6)α((−3bu2x + 6buuxx + 6u4xu− 6uxxxux + 3u2xx)t+
3xu2) + (1/2)α2tu3 + 3b(xuxx − ux) + xu4x − uxxx.

Theorem 9 reduces the proof of the above two theorems to
the search of cosymmetries of order up to four which is very
similar to the computation of symmetries in Theorem 8, so we
omit the relevant details.
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Conclusions

We considered the class of equations of the form

ut = u5x + buxxx + f(u)ux

with nonconstant f , which generalizes the Kawahara equation,
and obtained a complete description of generalized symmetries
and local conservation laws for equations from this class.

In particular, it was shown that the genuinely generalized
symmetries in this case do not exist, so the equations from the
above class are not symmetry integrable.

As a byproduct of our research it became clear that there
appear to be small imperfections in the classification results of
Gandarias et. al. ’17 on the Lie point symmetries of a slightly
more general equation

ut = a(t)u5x + b(t)uxxx + c(t)f(u)ux.
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