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@ Frobenius manifolds are equivalent to pencils of hydrodynamic
type (local) Poisson tensors, with some 'potentiality’
properties. (Dubrovin)

o Classical r-matrix formalism (Semenov-Tian-Shansky, ...) is
very efficient in construction of hydrodynamic Poisson tensors
and related integrable hierarchies. (Luan-Chau Li, Btaszak,
Sz., ...)

The goal is to develop the above scheme in order of construction
of Frobenius manifolds and solutions of WDVV equations directly
from principal hierarchy.
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Standard approach

@ The topological Landau-Ginzburg models (in 2d TFT):

/ /!
n (8',8") = — Z 1"esd)\:08 A )\dz

IA|<oo Az
/ /! /1!
c (a/’ 8/,, a///) - _ Z I’eSd)\:()a )\8}\)\8 >\dz,
[A]<oo z

where A = \(z) is a superpotential, as well as, the singularity
theory and Saito’s formalism. Simple singularities are labeled
An, Dy, Eg, E7, Es.

@ Construction from the point of view 7-functions, string
equations, etc. (Krichever, Aoyama and Kodama, Takasaki,

)

@ Dubrovin (remarkable) formula ...
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Frobenius manifold

Frobenius manifold
Smooth (or holomorphic) manifold M with (nondegenerate) metric
1 and Frobenius algebra structure on tangent bundle (TM, o), i.e.

o Is associative commutative unital and invariant:
n(XoY,Z)=n(X,Yo2Z).

Further requirements:

Q 1 is flat;

@ Vc is symmetric in all its four arguments, where
c(X,Y,Z2)=n(XoY,2),

© the unit e is flat, i.e. Ve =0;

Q exists Euler field E (i.e. VVE =0) s.t.

Lgo=o0 and Len = dn,

where d is a number. Normalisation: Lrpe = —e.
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WDVV associativity equations

Prepotential

Let {t*} be (local) flat coordinates of 7 s.t. e = d,1. Then, there
exists (smooth) function F(t) such that

_OPF(1) - O3F(t)

Cahy T BropBar Noof = Br1prediB”

WDVV equations

The structure constants: J, 0 0g = cgﬁ(t)&y, where
cgﬂ = CopeNY. Then, the associativity equations on F(t) are

FPF(t) ., PF()  PF@1) . 9PF(r)

0t 9tPorr | Dthoror | 0roPorr | dtrorote

Btazej M. Szablikowski Classical r-matrix like approach to Frobenius manifolds



Quasi-homogeneity condition
EF = (3 — d)F + quadratic terms,

where
E=((1-gu)t*+ry)0a-

A
Intersection form

Second flat metric

’y_l(oz,ﬁ) = (aof,E) a,feT™M

N,
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Dubrovin-Novikov bracket

Loop manifold: LM = {Sl — M}

Hydrodynamic Poisson bracket

has the form

of Oh
1% o -1
{h,f} = » auﬂﬂ W dx : /S1 <df, n Vuxdh> dx, (1)

where

Ky n,uyax ,us Y u°

EO’X

and u° : S — M are (dynamical) coordinate fields.

Recall that (1) is a Poisson bracket wrt nondegenerate metric 7 iff

(i) mis flat
(i) and T'%, is the Levi-Civita connection of 7.
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Further properties

Deformed flat connection

VxY =VxY+£XoY,

which is symmetric and flat.

Thus
%,’dhk(f) =0 < 8;6jhk = §c,§ O hy

Expanding, hi(§) = 3720 hi p€P, the coefficients can be
determined recursively from

aiajhhp = C,-IJ- 6,hk7p_1 P = 1, 2, oo o
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Principal hierarchy

Taking hy , as Hamiltonian densities and applying D-N Poisson
tensor wrt 7, in flat coordinates the hierarchy takes the form

(6) 1 = BB ).

Claim

| \

Let ho0 = naut?, then the prepotential F is determined by hq 1:

1
F=—— E%h, .t.
3—d¥ 1+q.t d#3

1
= mZ[(l_qa)ta‘{'ra] ha,l‘l'q-t- d#:)’
o
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Construction of Frobenius algebras |

Let g be an associative algebra and second multiplication be
aoyb:=/{(a)b+ al(b) a,beg,

generated by a linear map £ : g — g. A sufficient condition for its
associativity is the so-called (modified) Poincare-Bertrand formula

(a0 b) — £(a)¢(b) = 6 ab, (2)

where § € Center(g).

Besides, ¢/(-) = ¢(d-) satisfies (2) for arbitrary d € Center(g)
iff ¢ satisfies (2), then &' = 6d?.
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Construction of Frobenius algebras Il

Let A be a commutative associative unital algebra, with a trace
form tr : A — C s.t. the pairing (a, b) 4 := tr(ab) is
non-degenerate. Let oy be a second commutative associative
multiplication on A.

Invariant metric

Then, the metric
n(a, b) := tr(aoy b) a,be A
is (naturally) invariant

n(aogb,c)=tr(aosbosc)=n(a,boyc).
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Classical r-matrices

Let (g,[,]) be a Lie algebra.

Classical r-matrix

is a linear map r : g — g such that
[a, b], :=[r(a), b] +-[a,r(B)] ~ a,beg

defines second Lie bracket on g.

Modified Yang-Baxter equation

A sufficient condition for r to be a classical r-matrix is to satisfy:
[r(a)7 I’(b)] - r([aa b]r) + [a’ b] =0,

where « is a number.
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Simplest solutions

Assume that (A, ) can be decomposed into subalgebras, i.e.
A:AJF@.Af AL AL C Ay A+ﬁ.,4,=®.

Then ¢ = 1 (P; — P_) satisfies the Poincare-Bertrand equation for
=5
4

Assume that (A, [-,]) can be decomposed into Lie subalgebras, i.e.
A=A, ©A_ [At, A4] C Ay ArnA_=0.

Then r = %(PJr — P_) satisfies the Yang-Baxter equation for
o =

=
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Hamiltonian structures on Poisson algebras

Theorem by L.-C. Lie

Let (A, {-,-}) be a Poisson algebra with a non-degenerate
ad-invariant scalar product (a, b) 4 = Tr(ab). Assume that r is a
classical r-matrix, then for each n > 0 the formula

{h, f},(A) = (N {r(A"df), dh} 4 {df, r(\"dh)}) 4,

where h, f € C*°(A), defines a Poisson structure on A. Moreover,
all brackets are compatible.
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Hydrodynamic Poisson structure

Let the Poisson bracket on A be given in the form {-,-} = 9 A 0y,
where 0,0y € Der(A) and 0Oy is such that Oxr = roy.

Linear metric

Then, the linear Poisson bracket takes the hydrodynamic form
mo(w) = r*(Nwx) — Nr(wx) — r*(Axw’) + A0r(w)

for which the corresponding metric is ™ (w) = r*(Nw) — N r(w).

Proposition

If £ = r* satisfies the Poincare-Bertrand formula. then the
multiplications

ao, b=r"(Na)b+ ar*(\'b)

is associative and on A there is a structure of Frobenius algebra.

Btazej M. Szablikowski Classical r-matrix like approach to Frobenius manifolds



Useful formulae

Proposition

Rewriting the recurrence formula on the cotangent bundle of
Frobenius manifold one finds that

Uxdh=0 < 15 'Vxdh(\) = &dh(N) of X,

where <B,70T X> = (yo0 B, X).

Proposition
On (A, -, 0p) with £ = r* we have

| \

v ol Ae = Nr(yAs) + r*(Vy)Ar.

A\
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Poisson algebras of Laurent series near oo |

Algebra

Let A = {Zf\’ u;zi|u; € C} =A>k @ Ack. Then { = Py — %
only for k =0 or 1.

Multiplication

Let A € A, consider multiplications given by

aob:={(z"\;a)b+ al(z"\,b)
= (z"\;a)skb+ a(z"\;b)>k — z" A ab.

Metric

Trace form is tr(-) := —res;—o,(z~"-), then corresponding metric
has the form

77_1(‘*’) = 2" [(Azw)zk—r — Az(w)zr—4] -
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Poisson algebras of Laurent series near oo |l

Then, we have the Frobenius algebra structure on A for:

@ r = k =0, corresponds to dispersionless KdV;
@ r=1and k =1: dToda;

o r =1 and kK = 0: modified dToda;

@ r =2 and k = 1: isomorphic to dKdV.

The recurrence formula takes the form:
Oha()

T:—hp_l(A) p:071,2,....

Euler vector field:

1
E(N) =A— 52\
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Poisson algebras of Laurent series near oo Il

Respective Frobenius manifolds are:
(i) for r =0 when

/\/I:{)\:zN—l—uN_zzN_2—|—...+uo}CA,

corresponding to dKdV (equivalent with Ay model);

(ii) for r =1 when

M:{)\:zN+uN_1zN’1+...—|—u_mz*’"}CA N.,m >0,

corresponding to dToda.
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Generalisation to Whitham, r = kK = 0.

Now, A is appropriate meromorphic function with 'finite’ nonzero
poles 7.

Trace forms: troo(-) = —res,—oo(:) or try(-) = —res,— ().

Then, troo(BooAt) = try(ByA¢) and

Moo () = (A2w)Z = Az(w) o

7y (W) = —(Aw)lp + Az(w) -

Proposition

All the above operators define the same metric, i.e.

Nt (@, B) = tree (B (@) = try (B0 ()

and the same Frobenius algebras.
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Example, the case r = 0 (As3)

Superpotential

A=zt +u +vz+w=2+322+ 2z 4+ t1 4+ (£3)2

Linear Poisson tensor mo(w) = {(w)>0, A} — ({w, A})5q- Then, for
i =1,2,3 Casimirs are ¢; = fsl t! dx, where

4 i i i
th = - 4resz:oo)\_1+1 dt' = \7+
I_
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Euler vector field

1 13

Hence, . .
E= §t38t3 + Z1“28,52 + t10,.

One finds: h;j1 = HEmRe OO)\4 Lfori=1,2,3.

I(I+4

Prepotential

1

= —tH)R - (0% + (PR - g (P
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Example: two-pole case, r = k =0. |

Superpotential: A=z +t; (z — t3) ' + to (z — tg) J

Flat coordinates:

1 = h370 = rest3)\ th = h4’0 = rest4/\
t3 = h1 o = —resscLog\ + resy; LogA
ty = hpp = —resscLog\ + resy, Log .

Hamiltonian densities:

1 1
h3,1 - _Erest3/\2 h471 = —Erest4)\2

h11 = rese (ALogA — X) —resy; (ALogh — A)
ha1 = rese (ALogA — X) —resy, (ALogh — A)
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Example: two-pole case, r = kK =0. |l

Euler field: E(A) = A — z\; = 281045 A + 2205, A + 308\ + ta0g, A
Prepotential:

F=—tity — t; — tflogt; — t¥logty — 2ty trLog(ts — ts)
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Example: two-pole case, r = kK =0. |l

Euler field: E(A) = A — z\; = 281045 A + 2205, A + 308\ + ta0g, A
Prepotential:

F=—tity — t; — tflogt; — t¥logty — 2ty trLog(ts — ts)

Thank you! )
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