Metric Invariants of Spherical Harmonics

Valentin Lychagin

IPU, RAS, Moscow & UiTo, Tromso, Norway

September 22, 2021
Spherical harmonics of degree k are smooth solutions of the Euler equations

$$xu_x + yu_y + zu_z - ku = 0,$$

and the Laplace equations

$$u_{xx} + u_{yy} + u_{zz} = 0,$$
Spherical harmonics of degree k are smooth solutions of the Euler equations

$$x u_x + y u_y + z u_z - k u = 0,$$

and the Laplace equations

$$u_{xx} + u_{yy} + u_{zz} = 0,$$

Denote by

$$\mathcal{E}^{(i)} \subset J^i, i = 1, 2, \ldots, k$$

the corresponding equations and their prolongations.
Spherical harmonics of degree k are smooth solutions of the Euler

$$xu_x + yu_y + zu_z - ku = 0,$$

and the Laplace

$$u_{xx} + u_{yy} + u_{zz} = 0,$$

equations

Denote by

$$\mathcal{E}^{(i)} \subset J^i, \ i = 1, 2, \ldots, k$$

the corresponding equations and their prolongations.

Lie group $\textbf{SO}(3)$ is obvious symmetry group of these equations and all $\mathcal{E}^{(i)}$ are affine algebraic manifolds equipped with the algebraic $\textbf{SO}(3)$ - action.
Denote by \mathbb{H}_k the vector space of harmonic polynomials of degree k, i.e. the solution space of the Euler-Laplace equations. It is a $\text{SO}(3)$-module.
Denote by \mathbb{H}_k the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a $\text{SO}(3)$-module.

We say that a rational $\text{SO}(3)$-invariant function on \mathbb{H}_k is an algebraic metric invariant of spheric harmonics, having degree k. The field of algebraic invariants we denote by \mathbb{F}_a^k.

We say that a rational $\text{SO}(3)$-invariant function on affine manifold E_i is a differential metric invariant of spheric harmonics, having order i. The field of differential invariants we denote by \mathbb{F}_d^k.

Lychagin (IPU, RAS, Moscow & UiTo, Tromsø)
1. Denote by \mathbb{H}_k the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a $\text{SO}(3)$-module.

2. We say that a rational $\text{SO}(3)$-invariant function on \mathbb{H}_k is an algebraic metric invariant of spheric harmonics, having degree k.

3. The field of algebraic invariants we denote by \mathcal{F}_k^a.

Lychagin (IPU, RAS, Moscow & UiTo, Tromsø, Norway)
Denote by \mathbb{H}_k the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a $\text{SO}(3)$-module.

We say that a rational $\text{SO}(3)$-invariant function on \mathbb{H}_k is an *algebraic metric invariant of spheric harmonics*, having degree k.

The field of algebraic invariants we denote by \mathcal{F}_a^k.

We say that a rational $\text{SO}(3)$-invariant function on affine manifold $\mathcal{E}^{(i)}$ is a *differential metric invariant of spheric harmonics*, having order $\leq i$.
Denote by \mathbb{H}_k the vector space of harmonic polynomials of degree k i.e. the solution space of the Euler-Laplace equations. It is a $\text{SO}(3)$-module.

We say that a rational $\text{SO}(3)$-invariant function on \mathbb{H}_k is an algebraic metric invariant of spheric harmonics, having degree k.

The field of algebraic invariants we denote by \mathcal{F}^a_k.

We say that a rational $\text{SO}(3)$-invariant function on affine manifold $\mathcal{E}^{(i)}$ is a differential metric invariant of spheric harmonics, having order $\leq i$.

The field of differential invariants we denote by \mathcal{F}^d_k.
The Weyl algebra A_3 is the associative algebra of linear differential operators on \mathbb{R}^3 with polynomial coefficients.
1 The Weyl algebra A_3 is the associative algebra of linear differential operators on \mathbb{R}^3 with polynomial coefficients.

2 The Lie algebra $\mathfrak{sl}(2) \subset A_3$, generated by the following operators

$$X_+ = \frac{r^2}{2}, \quad H = \delta + \frac{3}{2}, \quad X_- = \frac{\Delta}{2},$$

where

$$r^2 = x^2 + y^2 + z^2, \quad \delta = x\partial_x + y\partial_y + z\partial_z, \quad \Delta = \partial_x^2 + \partial_y^2 + \partial_z^2,$$

and operators (X_+, H, X_-) form the Weyl basis in $\mathfrak{sl}(2)$:

$$[H, X_+] = 2X_+, \quad [H, X_-] = -2X_-, \quad [X_-, X_+] = H.$$
The Weyl algebra \(A_3 \) is the associative algebra of linear differential operators on \(\mathbb{R}^3 \) with polynomial coefficients.

The Lie algebra \(\mathfrak{sl}(2) \subset A_3 \), generated by the following operators

\[
X_+ = \frac{r^2}{2}, \quad H = \delta + \frac{3}{2}, \quad X_- = \frac{\Delta}{2},
\]

where

\[
r^2 = x^2 + y^2 + z^2, \quad \delta = x \partial_x + y \partial_y + z \partial_z, \quad \Delta = \partial_x^2 + \partial_y^2 + \partial_z^2,
\]

and operators \((X_+, H, X_-)\) form the Weyl basis in \(\mathfrak{sl}(2) \):

\[
[H, X_+] = 2X_+, [H, X_-] = -2X_-, [X_-, X_+] = H.
\]

The Lie algebra \(\mathfrak{so}(3) \subset A_3 \) generated by the angular momentum operators

\[
L_z = x\partial_y - y\partial_x, \quad L_y = x\partial_z - z\partial_x, \quad L_x = y\partial_z - z\partial_y.
\]
These Lie algebras mutually commute and the *universal enveloping algebra* $U(\mathfrak{sl}(2)) \subset A_3$ is the subalgebra of $so(3)$-invariant operators in A_3.

Casimir operator in Lie algebra $so(3)$ is the orbital angular momentum operator $\mathcal{M} = L_x^2 + L_y^2 + L_z^2$ and it coincides with Casimir operator in Lie algebra $\mathfrak{sl}(2)$: $\mathcal{M} = r^2 \Delta^2 \delta^2$.

Operator \mathcal{M} is also the spherical Laplace operator.
These Lie algebras mutually commute and the universal enveloping algebra $U(\mathfrak{sl}(2)) \subset A_3$ is the subalgebra of $\mathfrak{so}(3)$-invariant operators in A_3.

Casimir operator in Lie algebra $\mathfrak{so}(3)$ is the orbital angular momentum operator

$$M = L_x^2 + L_y^2 + L_z^2$$

and it coincides with Casimir operator in Lie algebra $\mathfrak{sl}(2)$:

$$M = r^2 \Delta - \delta^2 - \delta.$$
These Lie algebras mutually commute and the *universal enveloping algebra* $U(\mathfrak{sl}(2)) \subset A_3$ is the subalgebra of $\mathfrak{so}(3)$-invariant operators in A_3.

Casimir operator in Lie algebra $\mathfrak{so}(3)$ is the orbital angular momentum operator

$$M = L_x^2 + L_y^2 + L_z^2$$

and it coincides with Casimir operator in Lie algebra $\mathfrak{sl}(2)$:

$$M = r^2 \Delta - \delta^2 - \delta.$$

Operator M is also the spherical Laplace operator.
The following sequence

\[0 \rightarrow \mathbb{H}_k \rightarrow \mathbb{P}_k \xrightarrow{\Delta} \mathbb{P}_{k-2} \rightarrow 0 \]

is exact, and \(\dim \mathbb{H}_k = 2k + 1 \).
Harmonic polynomials

1. The following sequence

\[0 \rightarrow \mathbb{H}_k \rightarrow \mathbb{P}_k \xrightarrow{\Delta} \mathbb{P}_{k-2} \rightarrow 0 \]

is exact, and \(\dim \mathbb{H}_k = 2k + 1 \).

2. **Splitting** \(\mathbb{P}_k \): for any homogeneous polynomial \(p_k \in \mathbb{P}_k \) there are (and unique) spheric harmonics \(h_{k-2i} \in \mathbb{H}_{k-2i}, 0 \leq i \leq \left\lfloor \frac{k}{2} \right\rfloor \), such that

\[
p = \sum_{i=0}^{\left\lfloor \frac{k}{2} \right\rfloor} r^{2i} h_{k-2i}.
\]
Harmonic polynomials

1. The following sequence

\[0 \to \mathbb{H}_k \to \mathbb{P}_k \xrightarrow{\Delta} \mathbb{P}_{k-2} \to 0 \]

is exact, and \(\dim \mathbb{H}_k = 2k + 1 \).

2. **Splitting** \(\mathbb{P}_k \): for any homogeneous polynomial \(p_k \in \mathbb{P}_k \) there are (and unique) spheric harmonics \(h_{k-2i} \in \mathbb{H}_{k-2i} \), \(0 \leq i \leq \left\lfloor \frac{k}{2} \right\rfloor \), such that

\[p = \sum_{i=0}^{\left\lfloor \frac{k}{2} \right\rfloor} r^{2i} h_{k-2i}. \]

3. We have

\[M(h_k) = -k(k+1)h_k, \]

for all \(h_k \in \mathbb{H}_k \).
Harmonic polynomials

1. The following sequence

\[0 \to \mathbb{H}_k \to \mathbb{P}_k \xrightarrow{\Delta} \mathbb{P}_{k-2} \to 0 \]

is exact, and \(\dim \mathbb{H}_k = 2k + 1 \).

2. **Splitting** \(\mathbb{P}_k \): for any homogeneous polynomial \(p_k \in \mathbb{P}_k \) there are (and unique) spheric harmonics \(h_{k-2i} \in \mathbb{H}_{k-2i}, 0 \leq i \leq \left\lfloor \frac{k}{2} \right\rfloor \), such that

\[p = \sum_{i=0}^{\left\lfloor \frac{k}{2} \right\rfloor} r^{2i} h_{k-2i}. \]

3. We have

\[M(h_k) = -k(k+1) h_k, \]

for all \(h_k \in \mathbb{H}_k \).

4. The restriction of spheric harmonics on the unit sphere \(S^2 \subset \mathbb{R}^3 \) are eigenfunctions of the spherical laplacian \(\Delta_S \) with eigenvalues \(-k(k+1)\) and any continuous function on \(S^2 \) could be approximated (with any accuracy) by linear combination of spherical harmonics.
Harmonic projections $\eta_{k,2i} : \mathbb{P}_k \to \mathbb{H}_{k-2i}$ are the following

$$\eta_{k,2i} = r^{-2i} Q_{k,2i}(M),$$

where

$$Q_{k,2i}(\lambda) = \prod_{j \neq i} \frac{\lambda - \lambda_j}{\lambda_i - \lambda_j}, \quad \lambda_i = - (k - 2i)(k - 2i + 1).$$
Harmonic projections \(\eta_{k,2i} : \mathbb{P}_k \to \mathbb{H}_{k-2i} \) are the following

\[\eta_{k,2i} = r^{-2i} Q_{k,2i}(\mathcal{M}), \]

where

\[Q_{k,2i}(\lambda) = \prod_{j \neq i} \frac{\lambda - \lambda_j}{\lambda_i - \lambda_j}, \quad \lambda_i = -(k - 2i)(k - 2i + 1). \]

The following sequence

\[0 \to \mathbb{P}_{k-2} \xrightarrow{r^2} \mathbb{P}_k \xrightarrow{\eta_{k,0}} \mathbb{H}_k \to 0 \]

is exact.
Harmonic projections

1. **Harmonic projections** \(\eta_{k,2i} : \mathbb{P}_k \to \mathbb{H}_{k-2i} \) are the following

\[
\eta_{k,2i} = r^{-2i} Q_{k,2i}(\mathcal{M}),
\]

where

\[
Q_{k,2i}(\lambda) = \prod_{j \neq i} \frac{\lambda - \lambda_j}{\lambda_i - \lambda_j}, \quad \lambda_i = - (k - 2i)(k - 2i + 1).
\]

2. The following sequence

\[
0 \to \mathbb{P}_{k-2} \xrightarrow{r^2} \mathbb{P}_k \xrightarrow{\eta_{k,0}} \mathbb{H}_k \to 0
\]

is exact.

3. Define product of spheric harmonics \(h_k \in \mathbb{H}_k, h_l \in \mathbb{H}_l \) as follows

\[
h_k \ast h_l = \eta_{k+l,0}(h_k h_l) \in \mathbb{H}_{k+l}.
\]
Harmonic projections $\eta_{k,2i} : \mathbb{P}_k \to \mathbb{H}_{k-2i}$ are the following

$$\eta_{k,2i} = r^{-2i} Q_{k,2i} (M),$$

where

$$Q_{k,2i} (\lambda) = \prod_{j \neq i}^{[k/2]} \frac{\lambda - \lambda_j}{\lambda_i - \lambda_j}, \quad \lambda_i = -(k - 2i)(k - 2i + 1).$$

The following sequence

$$0 \to \mathbb{P}_{k-2} \xrightarrow{r^2} \mathbb{P}_k \xrightarrow{\eta_{k,0}} \mathbb{H}_k \to 0$$

is exact.

Define product of spheric harmonics $h_k \in \mathbb{H}_k, h_l \in \mathbb{H}_l$ as follows

$$h_k \ast h_l = \eta_{k+l,0} (h_k h_l) \in \mathbb{H}_{k+l}.$$

Here

$$\eta_{k+l,0} = \prod_{j=1}^{[k+l/2]} \frac{M + (k + l - 2j)(k + l - 2j + 1)}{2j (2j - 2k - 2l - 1)}.$$
Spherical harmonics

$$H_* = \bigoplus_{k \geq 0} H_k$$

form a graded commutative algebra with respect to the product \ast.
Spherical harmonics

\[H_* = \bigoplus_{k \geq 0} H_k \]

form a graded commutative algebra with respect to the product \(*\).

Algebra \((H_*, *)\) generated by linear functions \((x, y, z)\) satisfying the relation

\[x * x + y * y + z * z = 0. \]
Spherical harmonics

$$\mathbb{H}_* = \bigoplus_{k \geq 0} \mathbb{H}_k$$

form a graded commutative algebra with respect to the product \ast.

Algebra (\mathbb{H}_*, \ast) generated by linear functions (x, y, z) satisfying the relation

$$x \ast x + y \ast y + z \ast z = 0.$$

The complixification $\mathbb{H}_* = \mathbb{H} \otimes \mathbb{C}$ is the algebra of regular functions on the null cone $\{x^2 + y^2 + z^2 = 0\}$ in \mathbb{C}^3.
Algebra of spherical harmonics

1. Spherical harmonics

\[\mathbb{H}_* = \bigoplus_{k \geq 0} \mathbb{H}_k \]

form a graded commutative algebra with respect to the product \(\ast \).

2. Algebra \((\mathbb{H}_*, \ast)\) generated by linear functions \((x, y, z)\) satisfying the relation

\[x \ast x + y \ast y + z \ast z = 0. \]

3. The complixification \(\mathbb{H}_* = \mathbb{H} \otimes \mathbb{C}\) is the algebra of regular functions on the null cone \(\{x^2 + y^2 + z^2 = 0\}\) in \(\mathbb{C}^3\).

4. Example.

\[x \ast x = xx - \frac{r^2}{3}, \quad x \ast y = xy. \]
The space \mathbb{H}_k of spherical harmonics is a vector space of dimension $2k + 1$. The Lie group $\text{SO}(3)$ acts in algebraic way on \mathbb{H}_k, and in \mathbb{H}_k are realized all irreducible representations of $\text{SO}(3)$.
The space \mathbb{H}_k of spherical harmonics is a vector space of dimension $2k + 1$. The Lie group $\text{SO}(3)$ acts in algebraic way on \mathbb{H}_k, and in \mathbb{H}_k are realized all irreducible representations of $\text{SO}(3)$.

Due to Hilbert theorem polynomial invariants of this action (i.e. polynomial invariants of spherical harmonics) form a finite generated commutative algebra.

Due to Rosenlicht theorem rational invariants of this action (i.e. rational invariants of spherical harmonics) form a field of transcendence degree equals the codimension of regular orbit.

Regular orbit has codimension $(2k - 2)$, when $k > 1$, and codimension 1, when $k = 1$. Therefore, in order to define a regular orbit we need $2k$ algebraically independent rational invariants, for $k > 1$, and only one invariant, for $k = 1$.

Lychagin (IPU, RAS, Moscow & UiTo, Tromsø)
The space \mathbb{H}_k of spherical harmonics is a vector space of dimension $2k + 1$. The Lie group $\text{SO}(3)$ acts in algebraic way on \mathbb{H}_k, and in \mathbb{H}_k are realized all irreducible representations of $\text{SO}(3)$.

Due to Hilbert theorem polynomial invariants of this action (i.e. polynomial invariants of spherical harmonics) form a finite generated commutative algebra.

Due to Rosenlicht theorem rational invariants of this action (i.e. rational invariants of spherical harmonics) form a field of transcendence degree equals the codimension of regular orbit.

Regular orbit has codimension $(2k)^2$, when $k \geq 2$, and codimention 1, when $k = 1$.

Therefore, in order to define a regular orbit we need $2k^2$ algebraicly independent rational invariants, for $k > 2$, and only one invariant, for $k = 1$.

Lychagin (IPU, RAS, Moscow & UiTo, Tromsø, Norway)
The space \mathbb{H}_k of spherical harmonics is a vector space of dimension $2k + 1$. The Lie group $\textbf{SO}(3)$ acts in algebraic way on \mathbb{H}_k, and in \mathbb{H}_k are realized all irreducible representations of $\textbf{SO}(3)$.

Due to Hilbert theorem polynomial invariants of this action (i.e. polynomial invariants of spherical harmonics) form a finite generated commutative algebra.

Due to Rosenlicht theorem rational invariants of this action (i.e. rational invariants of spherical harmonics) form a field of transcendence degree equals the codimension of regular orbit.

Regular orbit has codimension $(2k - 2)$, when $k \geq 2$, and codimension 1, when $k = 1$. Therefore, in order to define a regular orbit we need $2k - 2$ algebraically independent rational invariants, for $k > 2$, and only one invariant, for $k = 1$.

Lychagin (IPU, RAS, Moscow & UiTo, Tromsø)
Equations $\mathcal{E}^{(i)}$ are affine manifolds of dimension $2i + 4$, if $2 \leq i < k$. The regular $\text{SO}(3)$-orbits (that correspond to smooth points of quotient $\mathcal{E}^{(i)}/\text{SO}(3)$) Thus, due to Hilbert theorem, the quotients are affine manifolds of dimension $2i + 1$. Rational differential invariants of order $\leq i$ are rational functions on $\mathcal{E}^{(i)}/\text{SO}(3)$ and therefore the transcendence degree of field \mathcal{F}_i^d equals to $2i + 1$.
Equations $\mathcal{E}^{(i)}$ are affine manifolds of dimension $2i + 4$, if $2 \leq i < k$. The regular $SO(3)$—orbits (that correspond to smooth points of quotient $\mathcal{E}^{(i)}/SO(3)$) Thus, due to Hilbert theorem, the quotients are affine manifolds of dimension $2i + 1$. Rational differential invariants of order $\leq i$ are rational functions on $\mathcal{E}^{(i)}/SO(3)$ and therefore the transcendence degree of field \mathcal{F}_i^d equals to $2i + 1$.

As we have seen, the transcendence degree of field \mathcal{F}_k^a equals $2(k - 1)$.
Equations $\mathcal{E}^{(i)}$ are affine manifolds of dimension $2i + 4$, if $2 \leq i < k$. The regular $\text{SO}(3)$--orbits (that correspond to smooth points of quotient $\mathcal{E}^{(i)}/\text{SO}(3)$) Thus, due to Hilbert theorem, the quotients are affine manifolds of dimension $2i + 1$. Rational differential invariants of order $\leq i$ are rational functions on $\mathcal{E}^{(i)}/\text{SO}(3)$ and therefore the transcendence degree of field \mathcal{F}^{d}_i equals to $2i + 1$.

As we have seen, the transcendence degree of field \mathcal{F}^{a}_k equals $2(k - 1)$.

Take a regular harmonic $h \in \mathbb{H}_k$. Then it is easy to check that the $\text{SO}(3)$--orbit of the 2-jet $j_2(h)$ into $\mathcal{E}^{(2)}$ is a 6-dimensional submanifold into 8-dimensional manifold $\mathcal{E}^{(2)}$ and therefore we need 2 differential invariants of order 2 to describe the orbit (compare with $2(k - 1)$ algebraic invariants).
Invariant coframe

Total differentials of the obvious invariants \(J_{-1} = \frac{r^2}{2} \) and \(J_0 = u \) give us two \(\text{SO}(3) \)-invariant horizontal 1–forms:

\[
\omega_1 = x dx + y dy + z dz,
\]
\[
\omega_2 = u_x dx + u_y dy + u_z dz.
\]
Invariant coframe

1. Total differentials of the obvious invariants $J_{-1} = \frac{r^2}{2}$ and $J_0 = u$ give us two $\text{SO}(3)$-invariant horizontal 1–forms:

$$\omega_1 = xdx + ydy + zdz,$$

$$\omega_2 = u_x dx + u_y dy + u_z dz.$$

2. Their cross product gives us

$$\omega_3 = (yu_z - zu_y) \, dx + (zu_x - xu_z) \, dy + (xu_y - yu_x) \, dz.$$
1. Total differentials of the obvious invariants $J_{-1} = \frac{r^2}{2}$ and $J_0 = u$ give us two $\textbf{SO}(3)$-invariant horizontal 1–forms:

\[\omega_1 = xdx + ydy + zdz, \]
\[\omega_2 = u_x dx + u_y dy + u_z dz. \]

2. Their cross product gives us

\[\omega_3 = (yu_z - zu_y) \, dx + (zu_x - xu_z) \, dy + (xu_y - yu_x) \, dz. \]

3. Then coframe $(\omega_1, \omega_2, \omega_3)$ is $\textbf{SO}(3)$-invariant.
Invariant frame

\begin{align*}
D_1 &= x \frac{d}{dx} + y \frac{d}{dy} + z \frac{d}{dz}, \\
D_2 &= u_x \frac{d}{dx} + u_y \frac{d}{dy} + u_z \frac{d}{dz}, \\
D_3 &= (yu_z - zu_y) \frac{d}{dx} + (zu_x - xu_z) \frac{d}{dy} + (xu_y - yu_x) \frac{d}{dz}.
\end{align*}
First invariants

\[J_{-1} = \frac{r^2}{2}, \quad J_0 = u, \]
\[J_1 = D_2(J_0) = u_x^2 + u_y^2 + u_z^2, \]
\[J_{21} = \frac{D_2(J_1)}{2} = u_x^2 u_{xx} + u_y^2 u_{yy} + u_z^2 u_{zz} +
2 \left(u_x u_y u_{xy} + u_x u_z u_{xz} + u_y u_z u_{yz} \right). \]
Invariant symmetric forms and operators

1. Symmetric differential i-forms

\[\Theta_i = \sum_{i_1 + i_2 + i_3 = i} u_{i_1, i_2, i_3} \frac{dx^{i_1}}{i_1!} \cdot \frac{dy^{i_2}}{i_2!} \cdot \frac{dz^{i_3}}{i_3!} \]

are invariants with respect to Lie group of affine transformations in \mathbb{R}^3.
Invariant symmetric forms and operators

1. Symmetric differential i-forms

$$\Theta_i = \sum_{i_1+i_2+i_3=i} u_{i_1,i_2,i_3} \frac{dx^{i_1}}{i_1!} \cdot \frac{dy^{i_2}}{i_2!} \cdot \frac{dz^{i_3}}{i_3!}$$

are invariants with respect to Lie group of affine transformations in \mathbb{R}^3.

2. Differential operators

$$\hat{\Theta}_i = \sum_{i_1+i_2+i_3=i} u_{i_1,i_2,i_3} \frac{d^k}{i_1!i_2!i_3!} \frac{dx^{i_1}}{i_1!} \frac{dy^{i_2}}{i_2!} \frac{dz^{i_3}}{i_3!}$$

are $SO(3)$-invariant.
Invariants

Let

\[dx = t_{11} \omega_1 + t_{12} \omega_2 + t_{13} \omega_3, \]
\[dy = t_{21} \omega_1 + t_{22} \omega_2 + t_{23} \omega_3, \]
\[dz = t_{31} \omega_1 + t_{32} \omega_2 + t_{33} \omega_3, \]

where \(t_{ij} \) are rational functions on \(J^1 (\mathbb{R}^3) \), and let

\[\Theta_i = \sum_{i_1 + i_2 + i_3 = i} T_{i_1, i_2, i_3} \frac{\omega_1^{i_1}}{i_1!} \cdot \frac{\omega_2^{i_2}}{i_2!} \cdot \frac{\omega_3^{i_3}}{i_3!}. \]

Theorem

Functions \(T_{i_1, i_2, i_3} \) are rational differential \(\text{SO}(3) \)-invariants of order \(i = i_1 + i_2 + i_3 \) and any rational differential \(\text{SO}(3) \)-invariants of order \(i \) is a rational function of them.
Remark that invariants

\[G_i = \Theta_i(u) = \sum_{i_1 + i_2 + i_3 = i} \frac{u_{i_1,i_2,i_3}^2}{i_1! i_2! i_3!} \]

are squares of lengths of symmetric forms \(\Theta_i \).

Thus,

\[\Theta_1 = u_x \frac{d}{dx} + u_y \frac{d}{dy} + u_z \frac{d}{dz}, \]
\[\Theta_2 = \frac{1}{2} \left(u_{xx} \frac{d^2}{dx^2} + u_{yy} \frac{d^2}{dy^2} + u_{zz} \frac{d^2}{dz^2} \right) + u_{xy} \frac{d^2}{dxdy} + u_{xz} \frac{d^2}{dxdz} + u_{yz} \frac{d^2}{dydz} \]

and

\[\Theta_1(u) = u_x^2 + u_y^2 + u_z^2, \]
\[\Theta_1(u) = J_{22} = \frac{u_{xx}^2 + u_{yy}^2 + u_{zz}^2}{2} + u_{xy}^2 + u_{xz}^2 + u_{yz}^2. \]
Theorem

The field of rational differential $\textbf{SO}(3)$-invariants of spherical harmonics is generated by invariants $(J_{-1} = \frac{r^2}{2}, J_0 = u, J_{22})$ and derivation $\nabla = \hat{\Theta}_1$.
Monoid of invariants

\[\text{SO}(3) \text{ -- Invariants} \iff \text{SO}(3) \text{ -- invariant differential operators:} \]

\[\phi \in C^\infty \left(\mathbf{J}^k \left(\mathbb{R}^3 \right) \right) \iff \Delta_\phi : C^\infty \left(\mathbb{R}^3 \right) \to C^\infty \left(\mathbb{R}^3 \right) , \]

\[\Delta_\phi \left(f \right) = j_k \left(f \right)^* \left(\phi \right) . \]
Monoid of invariants

1. $\text{SO}(3)$—Invariants $\iff \text{SO}(3)$—invariant differential operators:

$$\phi \in C^\infty \left(J^k (\mathbb{R}^3) \right) \iff \Delta_\phi : C^\infty (\mathbb{R}^3) \to C^\infty (\mathbb{R}^3),$$

$$\Delta_\phi (f) = j_k (f)^* (\phi).$$

2. Monoid structure on $\text{SO}(3)$—invariants defines by the composition of invariant operators, and $\text{id} = u$.

Lychagin (IPU, RAS, Moscow & UiTo, Tromsø)
September 22, 2021 18 / 20
1. \(\operatorname{SO}(3) \) — Invariants \(\iff \) \(\operatorname{SO}(3) \) — invariant differential operators:

\[
\phi \in C^\infty \left(J^k \left(\mathbb{R}^3 \right) \right) \iff \Delta_\phi : C^\infty \left(\mathbb{R}^3 \right) \to C^\infty \left(\mathbb{R}^3 \right),
\]

\[
\Delta_\phi (f) = j_k (f)^* (\phi).
\]

2. Monoid structure on \(\operatorname{SO}(3) \) — invariants defines by the composition of invariant operators, and \(\text{id} = u \).

3. Thus, the field \(\mathcal{F}_k \) is the monoid.
Let

\[W = x \partial_x + y \partial_y + z \partial_z + ku \partial_u, \]

and let \(W^* \) be its \(\infty \)-prolongation.
Let

\[W = x \partial_x + y \partial_y + z \partial_z + ku \partial_u, \]

and let \(W^* \) be its ∞-prolongation.

We say that a polynomial differential invariant \(I \) has weight \(w(I) \) if

\[W^*(I) = w(I) I. \]
Let
\[W = x \partial_x + y \partial_y + z \partial_z + ku \partial_u, \]
and let \(W^* \) be its \(\infty \)-prolongation.

We say that a polynomial differential invariant \(I \) has weight \(w(I) \) if
\[W^*(I) = w(I) I. \]

In other words, if \(h \) is a homogeneous polynomial of degree \(k \) then \(I(h) \) has degree \(w(I) \).
1. Algebraic invariants on \mathbb{H}_k are differential invariants of order k.
1. Algebraic invariants on \mathbb{H}_k are differential invariants of order k.

2. Let I be a polynomial differential invariant of weight w, and $h \in \mathbb{H}_k$. Then $I(h) = P w$, $(\eta_w, 2 l \Delta I)(h) = P w$ and its length $\Delta G w^{2 l} \eta_w, 2 l \Delta I$ is a scalar, i.e. invariant $G w^{2 l} \eta_w, 2 l \Delta I$ is an algebraic invariant.
1. Algebraic invariants on \mathbb{H}_k are differential invariants of order k.
2. Let I be a polynomial differential invariant of weight w, and $h \in \mathbb{H}_k$.
3. Then $I(h) \in \mathbb{P}_w$, $(\eta_{w,2l} \circ \Delta_l)(h) \in \mathbb{H}_{w-2l}$ and its length $(\Delta_{G_{w-2l}} \circ \eta_{w,2l} \circ \Delta_l)(h)$ is a scalar, i.e invariant $G_{w-2l} \circ \eta_{w,2l} \circ I$ is an algebraic invariant.