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1. Introduction

Consider integrable Hamiltonians

H = ∆ + U(x1, ..., xn), where ∆ =

n∑
i=1

∂2

∂x2i
(1)

related to simple Lie algebras. For such Hamiltonians the
potential U is a rational, trigonometric or elliptic function. For
instance, the elliptic Calogero-Moser Hamiltonian is given by

H = ∆ + g
∑
i>j

℘(xi − xj),

where g is arbitrary constant.

Observation 1 (A.Turbiner). For many of these
Hamiltonians there exists a change of variables and a gauge
transformation that bring the Hamiltonian to a differential
operator with polynomial coefficients.



Example. Consider the Calogero model with n = 3:

H = ∆ + g

3∑
i>j

1

(xi − xj)2
.

Let Y =
∑3

i=1 xi and yi = xi − Y
3 . Then

∆ = −3
∂2

∂Y 2
− 2

3

( ∂2
∂y21

+
∂2

∂y22
− ∂2

∂y1∂y2

)
.

Thus we have reduced the Hamiltonian to the following two
dimensional one:

H = −1

3

( ∂2
∂y21

+
∂2

∂y22
− ∂2

∂y1∂y2

)
+ ν(ν − 1)

3∑
i>j

1

(yi − yj)2
. (2)

Here y3 = −y1 − y2.



The change of variables

x = −y21 − y22 − y1y2, y = −y1y2(y1 + y2)

and the gauge transformation H → h−1Hh, where

h = (x− y)ν(2x+ y)ν(x+ 2y)ν ,

bring H to the polynomial form

L = x
∂2

∂x2
+ 3y

∂2

∂x∂y
− 1

3
x2

∂2

∂y2
+ (1 + 3ν)

∂

∂x
. �



In the trigonometric case the transformation to a
polynomial form is given by

x = cos y1 + cos y2 + cos (y1 + y2)− 3,

y = sin y1 + sin y2 − sin (y1 + y2).

Recently (A.Turbiner, VS) the transformation

x =
℘′(y1)− ℘′(y2)

℘(y1)℘′(y2)− ℘(y2)℘′(y1)
, y =

℘(y1)− ℘(y2)

℘(y1)℘′(y2)− ℘(y2)℘′(y1)

that brings the elliptic Calogero-Moser Hamiltonian to a
polynomial form has been found. The above rational and
trigonometric transformations are its degenerations. �



Conjecture (M. Matushko). The analog of the above
transformation for arbitrary n is given by the solution of the
linear system

Mu = e,

where u = (u1, . . . , un)t, e = (1, 1, . . . , 1)t with

M i
j =

dj−1℘(yi)

dyj−1i

.

This formala gives correct transformations in the cases
n = 1, 2, 3.



Obviously, for any polynomial form P of Hamiltonian (1)

1: the contravariant metric g defining by the symbol of P is flat

and

2: P can be reduced to a self-adjoint operator by a gauge
transformation P → fPf−1, where f is a function.

Besides evident properties 1,2 we have in mind the
following non-trivial

Observation 2. (A. Turbiner). For all known cases

3: P preserves some nontrivial finite - dimensional vector space
V of polynomials.

In the most interesting case the vector space V coincides
with the space Vk of all polynomials of degrees 6 k for some k.



1. ODE elliptic case.

Let

Q =

m∑
i=0

ai(x)
di

dxi

be an ordinary differential operator of degree m with polynomial
coefficients.

Conjecture. The vector space Vk of polynomials of degree
6 k, where k > m, is invariant with respect to Q iff Q is a
polynomial in generators

J1 = 1, J2 =
d

dx
, J3 = x

d

dx
, J4 = x2

d

dx
− kx.

The Lie algebra generated by J1, ..., J4 is isomorphic to gl(2). �

Remark. Consider operators D = T − 1 and X = xT−1,
where T (f(x)) = f(x+ 1). Then [D,X] = 1.



Lemma. If Q preserves Vk, где k > m, then deg ai 6 m+ i.

In particular, any such operator P of second order has the
following structure:

P = (a4x
4 + a3x

3 + a2x
2 + a1x+ a0)

d2

dx2
+

(b3x
3 + b2x

2 + b1x+ b0)
d

dx
+ c2x

2 + c1x+ c0,

where the coefficients are related by the following identities

b3 = 2(1− k) a4, c2 = k(k− 1) a4, c1 = k(a3 − ka3 − b2).



The transformation group

x→ s1x+ s2
s3x+ s4

, P → (s3x+ s4)
−kP (s3x+ s4)

k, (3)

acts on the nine-dimensional vector space of such operators. The
coefficient a(x) at the second derivative is a fourth order polyno-
mial which transforms as follows

a(x)→ (s3x+ s4)
4a
(c1x+ c2
c3x+ c4

)
.

If a(x) has four distinct roots, we call the operator P elliptic. In
the elliptic case using transformations (3), we may reduce a to

a(x) = 4x(x− 1)(x− κ).



Define parameters n1, ..., n5 by identities

b0 = 2(1 + 2n1), b1 = −4
(

(κ+ 1)(n1 + 1) + κn2 + n3

)
,

b2 = −2 (3 + 2n1 + 2n2 + 2n3),

k = −1

2
(n1 + n2 + n3 + n4),

n5 = c0 + n2(1− n2) + κn3(1− n3) + (n1 + n3)
2 + κ(n1 + n2)

2.

Then the operator H = hPh−1, where

h = x
n1
2 (x− 1)

n2
2 (x− κ)

n3
2

has the form

H = a(x)
d2

dx2
+
a′(x)

2

d

dx
+ n5 + n4(1− n4)x+

n1(1− n1)κ
x

+

n2(1− n2)(1− κ)

x− 1
+
n3(1− n3)κ(κ− 1)

x− κ
.



Now after the transformation y = f(x), where

f ′2 = 4f(f − 1)(f − κ)

we arrive at

H =
d2

dy2
+ n5 + n4(1− n4) f +

n1(1− n1)κ
f

+

n2(1− n2)(1− κ)

f − 1
+
n3(1− n3)κ(κ− 1)

f − κ
.

In general here ni are arbitrary parameters.

When
k = −1

2
(n1 + n2 + n3 + n4)

is a natural number, the operator H preserves the finite-
dimensional polynomial vector space Vk.



Another form of this Hamiltonian (up to a constant) is
given by

H =
d2

dy2
+ n4(1− n4)℘(y) + n1(1− n1)℘(y + ω1)+

n2(1− n2)℘(y + ω2) + n3(1− n3)℘(y + ω1 + ω2),

where ωi are half-periods of the Weierstrass function ℘(x). If
n1 = n2 = n3 = 0 we get the Lame operator. In general, it is the
Darboux-Treibich-Verdier operator.



2. Two-dimensional case.

Consider second order differential operators

L = a(x, y)
∂2

∂x2
+ 2b(x, y)

∂2

∂x∂y
+ c(x, y)

∂2

∂y2
+ d(x, y)

∂

∂x
+

e(x, y)
∂

∂y
+ f(x, y) (4)

with polynomial coefficients. Denote by D(x, y) the determinant
a(x, y)c(x, y)− b(x, y)2. We assume that D 6= 0.

The operators we are interested in should possess three
important properties:
Property 1. We assume that the associated contravariant
metric

g1,1 = a , g1,2 = g2,1 = b , g2,2 = c ,

is flat or R1,2,1,2 = 0.



This is equivalent to

2
(
b2axx − 2abbxx + a2cxx + 2bcaxy − 2(b2 + ac)bxy + 2abcxy+

+c2ayy − 2bcbyy + b2cyy

)
×D + first order terms = 0.

Example 1. For any constant κ the metric g with

a = (x2 − 1)(x2 − κ) + (x2 + κ) y2,

b = xy (x2 + y2 + 1− 2κ), (5)

c = (κ− 1)(x2 − 1) + (x2 + 2− κ) y2 + y4

is flat.

In this case we have

D = (y2+x2+2x+1)(y2+x2−2x+1)
(
κy2+(κ−1)x2+κ(1−κ)

)
.



Property 2. The operator should be potential. This means that

∂

∂y

(be− cd+ c(ax + by)− b(bx + cy)

D

)
(6)

=
∂

∂x

(bd− ae+ a(bx + cy)− b(ax + by)

D

)
.

The properties 1 and 2 guaranty that L can be reduced to
the form

L̄ =
∂2

∂x2
+

∂2

∂y2
+ V (x, y)

by a proper change of variables and by a guage transform.



Observation 2. (A. Turbiner). Known polynomial forms for
the Calogero-Moser type Hamiltonians preserve some finite -
dimensional vector spaces of polynomials.

In this talk we consider operators (4) with polynomial
coefficients that satisfy the following condition:

Property 3. The operator has to preserve the vector space Vn
of all polynomials P (x, y) such that degP 6 n for some n > 2.



Proposition. The operator L satisfies Property 3 iff the
coefficients of L have the following structure

a = q1x
4 + q2x

3y + q3x
2y2 + k1x

3 + k2x
2y + k3xy

2+

a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6;

b = q1x
3y+q2x

2y2+q3xy
3+

1

2

(
k4x

3+(k1+k5)x
2y+(k2+k6)xy

2+k3y
3
)

+b1x
2 + b2xy + b3y

2 + b4x+ b5y + b6;

c = q1x
2y2 + q2xy

3 + q3y
4 + k4x

2y + k5xy
2 + k6y

3+

c1x
2 + c2xy + c3y

2 + c4x+ c5y + c6;



d = (1−n)
(

2(q1x
3+q2x

2y+q3xy
2)+k7x

2+(k2+k8−k6)xy+k3y
2
)

+

d1x+ d2y + d3;

e = (1−n)
(

2(q1x
2y+q2xy

2+q3y
3)+k4x

2+(k5+k7−k1)xy+k8y
2
)

+

e1x+ e2y + e3;

f = n(n− 1)
(
q1x

2 + q2xy+ q3y
2 + (k7− k1)x+ (k8− k6)y

)
+ f1.

The dimension of the space of such operators equals 36.
The group GL3 acts on this vector space by the formula

x̃ =
P

R
, ỹ =

Q

R
, L̃ = R−nLRn,

where P,Q,R are polynomials of degree one in x and y.



This representation is a sum of irreducible representations W1,
W2 and W3 of dimensions 27, 8 and 1 correspondingly. A basis
in W2 is given by

x1 = 5k7 − k5 − 7k1, x2 = 5k8 − k2 − 7k6,

x3 = 5d1 + 2(n− 1)(2a1 + b2), x4 = 5e1 + 2(n− 1)(2b1 + c2),

x5 = 5d2 + 2(n− 1)(2b3 + a2), x6 = 5e2 + 2(n− 1)(2c3 + b2),

x7 = 5d3 + 2(n− 1)(a4 + b5), x8 = 5e3 + 2(n− 1)(b4 + c5).

The generic orbit of the action on W2 has dimension 6. There
are two polynomial invariants of the action:

I1 = x23 − x3x6 + x26 + 3x4x5 + 3(n− 1)(x1x7 + x2x8),

and

I2 = 2x33 − 3x23x6 − 3x3x
2
6 + 2x36 + 9x4x5(x3 + x6)+

9(n−1)(x1x3x7+x2x6x8−2x1x6x7−2x2x3x8+3x2x4x7+3x1x5x8).



Flat potential operators with discrete symmetries

For almost all known examples the operator L that satisfies
Properties 1-3 its symbol admits additional finite group of
discrete symmetries.

Example 2. The operator with coefficients

a = x2(x2 + y2) + αx2 + βy2, b = xy(x2 + y2) + (α− β)xy,

c = y2(x2 + y2) + βx2 + αy2, d = 2(n− 1)x(λ− x2 − y2),

e = 2(n− 1)y(λ− x2 − y2), f = n(n− 1)(x2 + y2).

satisfies Properties 1-3, and possesses the discrete group of
symmetries isomorphic D4, generated by reflections

x→ −x, y → y, x→ x, y → −y, x→ y, y → x. (7)



Consider the case when L is invariant with respect to a
reflection. Using a transformation, we reduce the reflection to
the form x̃ = x, ỹ = −y. Then the coefficients of the operator L
have the following symmetry properties:

a(x,−y) = a(x, y), b(x,−y) = −b(x, y), c(x,−y) = c(x, y),

d(x,−y) = d(x, y), e(x,−y) = −e(x, y), f(x,−y) = f(x, y).

The class of such operators admits the transformation group

x̃ =
αx+ β

γx+ δ
, ỹ =

y

γx+ δ
. (8)

Transformations L̃ = c1L+ c2 are also allowed.
Transformations (8) act on 15-dimensional vector space of

coefficients of polynomials a, b, c. The irreducible components of
this representation have dimensions 5, 3, 3, 3, 1.



If we write the coefficients a, b and c in the form

a = P +Qy2, b =
1

4
(P ′ −R)y +

1

2
Q′y3,

c = S +
( 1

12
P ′′ − 1

4
R′ + σ

)
y2 +

1

2
Q′′y4.

where degP = 4, degQ = degR = degS = 2, then the
coefficients of these polynomials and the constant σ correspond
to irreducible components.

In particular, the polynomial P changes under
transformations (8) as follows

P̃ = (γx+ δ)4P
(αx+ β

γx+ δ

)
. (9)

Definition. A differential operator L is called elliptic if
the polynomial P has four different roots on the Riemann
sphere. It is called trigonometric if P has one double root.



Classification of the elliptic models

Proposition 1. If Property 1 holds and P, S 6= 0 then any
root of the polynomial S is a root of the polynomial P. �

Consider elliptic models with symbols that admit the
discrete group of symmetries (7) isomorphic D4. Without loss of
generality we set P (x) = (x2 − 1)(x2 − κ). Taking into account
Proposition 1 and the condition S(−x) = S(x), we may put
S(x) = (x2 − 1). Another possibility is S(x) = 0.

In both cases the system on algebraic equations for 6
unknown coefficients of polynomials Q,R and σ equivalent to
zero-curvature condition R1,2,1,2 = 0 can be easily solved. As a
result we obtain

Proposition 2. Any elliptic symbol that admit symmetries
(7) coincides up to a scaling with the symbol from Example 1. �



Consider now any elliptic symbols invariant with respect to
x̃ = x, ỹ = −y. Without loss of generality we set

P (x) = x(x− 1)(x− κ).

It follows from Proposition 1 that there are two
alternatives: multiple roots A: S = kx2 and distinct roots
B: S = kx(x− 1).

Theorem 1. In Case A with k 6= 0 we obtain from
R1,2,1,2 = 0 that

S(x) = x2, R(x) = −5

3
(x2 − 2x+ 3κ− 2κx),

Q(x) =
1

9
(x2 − x+ 1 + κ2 − κx− κ), σ = 0. �



Theorem 2. In Case B we have

S(x) = x(x− 1), R(x) = −3(x2 − 2κx+ κ),

Q(x) =
1

2
(x2 − 2κx+ 2κ2 − κ), σ =

1

3
(2κ− 1). �

It turns out that in the case S = 0 we have no elliptic
symbols.

It is easy to verify that the symbol from Theorem 2 is
equivalent to the symbol (5) from Example 1.

Now for both elliptic symbols found in Theorems 1,2 we are
going to find from (6) the coefficients d(x, y), e(x, y) at the first
derivatives in the Hamiltonian. It is trivial since given a, b, c
condition (6) is equivalent to a system of linear equations for
the coefficients of polynomials d and e.



The Inozemtsev elliptic model

However there is a non-trivial observation here. For symbol
(5) polynomials d and e depend on three arbitrary parameters.
But due to D4-symmetry the symbol admits the transformation
x̄ = x2, ȳ = y2. After this transformation and a scaling, we get

a = x(x− 1)(x− κ) + (1− κ)x(x+ κ) y,

b = x(x+ 1− 2κ) y + (1− κ)x y2,

c = (1− x) y + (x+ 2− κ) y2 + (1− κ) y3.

It follows from (6) that

d = λ1x(x+ y − κy) + λ2(1 + y − κy) + p x,

e = λ1y(x+ y − κy) + λ3(x− 1) + q y,

f = λ4(x+ y − κy) + λ5,

where

κp+ (1− κ)q + λ1(2κ− 1) + λ2(2− κ) + λ3(1− κ2) = 0.



Thus, now d and e depend on 5 arbitrary parameters!
Let L be the corresponding second order operator with the

above polynomial coefficients. If we bring the operator L̄ = −4L
to the canonical form by transformation

x̄ = f(x)f(y), ȳ =
(f(x)− 1)(f(y)− 1)

κ− 1
,

where
f ′2 = 4f(f − 1)(f − κ),

and by a gauge transformation, we get

H = ∆ + 2m(m− 1)(℘(x+ y) + ℘(x− y))+

3∑
i=0

ni(ni − 1)(℘(x+ ωi) + ℘(y + ωi)),

where ω0 = 0, ω3 = ω1 + ω2 and ω1, ω2 are the half-periods of
the Weierstrass function ℘(x).



This is so called Inozemtsev BC2 Hamiltonian. Its
polynomial form preserves Vk if

k = −1

2
(2m+

∑
ni)

is a natural number.



A2 and G2 elliptic models

For the symbol from Theorem 1 condition (6) leeds to

d =
1

9
(1− n)

(
3(5x2 − 4x− 4κx+ 3κ) + (2x− 1− κ) y2

)
,

e =
2

9
(1−n) y

(
9x+y2−6κ−6

)
, f =

1

9
n(n−1)

(
6x+y2

)
. �

Therefore, in this case we have no arbitrary constants in d and e
except for n. It turns out that this is a polynomial form of the
A2-elliptic model.

In contrast to the BC2 Inozemtsev case, the finding of
transformations that bring the operator to the Schrodinger form
(1) is a rather difficult problem.



To receive arbitrary parameters in d and e we apply the
same trick as in Example 1. Namely we apply transformation
x̄ = x, ȳ = y2. Due to the symmetry properties of the symbol
the new symbol is also polynomial:

a = x(x− 1)(x− κ) +
1

9
(1− x+ x2 − κ− κx+ κ2) y,

b =
1

3
(7x2 − 8x− 8κx+ 9κ) y +

1

9
(2x− 1− κ) y2,

c = 4x2y +
4

3
(4x− 3− 3κ) y2 +

4

9
y3.

The determinant D is given by D = − y
27 K(x, y), where

K = (k3y
3 + 6k2y

2 + 9k1y + 108k0),

k3 = (κ− 1)2, k0 = x3(x− 1)(x− κ),

k2 = (κ+ 1)x2 + 2(κ2 − 4κ+ 1)x− (κ− 2)(κ+ 1)(2κ− 1),

k1 = x4 + 8(κ+ 1)x3 − 2(4κ2 + 23κ+ 4)x2 + 36κ(κ+ 1)x− 27κ2.



Condition (6) implies

d =
1

9
(1− n)(6x+ y)(2x− 1− κ) +

s

3
(x2 − 2x− 2κx+ 3κ),

e =
2

9
(9x2 + 12xy + y2 − 9y − 9κy) +

2s

3
(3x2 + xy − y − κy)+

2(n− 1)

9
(9x2 − 15xy − 2y2 + 9y + 9κy),

f =
n(n− 1)

9
(3x+ y)− s

3
nx.

We see an extra parameter s this formulas.

Introduce parameters mi by identities

n = −3m1 −m2, s = 1 + 3m1 + 3m2.



Then

hLh−1 = ∆g +m2(1−m2)
x2

y
+ 3m1(1−m1)

P 2

K
+ λ. (10)

Here ∆g is the Laplace-Beltrami operator, h = K
m1
2 y

m2
2 ,

P = 3x3 − 6(κ+ 1)x2 + (y + κy + 9κ)x− 2(κ2 − κ+ 1)y,

λ =
κ+ 1

3
(3m1 +m2)(1 + 3m1 + 3m2).

Applying the transformation

x =
f(y1)

2f ′(y2)− f(y1)
2f ′(y2)

f(y1)f ′(y2)− f(y1)f ′(y2)

y = −12

(
f(y1)f(y2)(f(y1)− f(y2))

f(y1)f ′(y2)− f(y1)f ′(y2)

)2

,



where f ′2 = 4f(f − 1)(κ− f), to operator (10), we get

H = −1

3

(
∂2

∂y21
+

∂2

∂y22
− ∂2

∂y1∂y2

)
+ V (y1, y2),

where

V = (m1 − 1)m1

(
℘(y1 − y2) + ℘(2y1 + y2) + ℘(y1 + 2y2)

)
+

+
(m2 − 1)m2

3

(
℘(y1) + ℘(y2) + ℘(y1 + y2)

)
.

This is just the elliptic G2-model. The elliptic A2-model
corresponds to the special case m2 = 0. The invariants of the
℘-function are related to the parameter κ as follows

g2 =
4

3
(κ2 − κ+ 1), g3 = − 4

27
(κ− 2)(κ+ 1)(2κ− 1).

The polynomial form of the G2-model preserves Vn if
n = −3m1 −m2 is a natural number.


