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R-matrix formalism
A systematic way to construct the operators A
for a given L so that we obtain self-consistent
compatibility conditions L; = [Ag, L] is provided
by the R-matrix formalism.

Given a Lie algebra & with the commutator [,],
a linear map R: ® — & such that the bracket

la,b] p := [Ra, b] + [a, Rb] (1)

IS another Lie bracket on & is called the classical
R-matrix.



R-matrix formalism II

A sufficient condition for R to be a classical R-
matrix is to satisfy the following so-called Yang-

Baxter equation, YB(«a),
[RCL, Rb] - R [a'7 b]R + « [CL, b] — Oa (2)

where « is a number from the ground field K (R
or C). There are only two substantially different

cases, namely a #= 0 and a = 0.



Algebra of pseudo-differential operators

N .
Ql:{L:’ 3 hiDZ}, (3)

1——00

where D is (informally) the total z-derivative,

where x IS the independent variable.

The noncommutative multiplication in 2 is de-
fined using the (generalized) Leibniz rule

Drof = & k(k—l)---’l(k—i—l—l)

1=0 1.

DY(f)DF" (4)

[A,B] = AoB—BoA A, B el



Algebra of pseudo-differential operators II

Consider the following decomposition of L:
M=Ap DU 1= { > uzDz}@{ > CLZDZ} (5)
i>k i<k
Then, /s and A, are Lie subalgebras of 2 only

for k =0,1,2, and we have the classical R-matrices

1 1

Ry = (P.p — P.,)=P —1 _p . (6
k_2 >k <k) — L2k 2_2 <k>

where P> and Py are projections onto 25, and

A, respectively.



Fractional powers
Consider an element L from 2 of the form

L=unD"4+uy 1Dt tuy oDV 2. (7)
where N > 0. Then its N-th root
1
IN=a1D+ag+a 1Dt +a D2+ ...,

where the coefficients a; are local (depend on w;
and a finite number of their xz-derivatives) and
can be constructed recursively from the equality

N times

1\ N 1 1
(LN> — [ No...oLN = .

~



Fractional powers and Lax hierarchies on 2
n times

~

n 1 1
The fractional powers LN = [LNo...o LN gener-

ate the following Lax hierarchies related to clas-

sical R-matrices (6):

Lo = [0 1] = [(08),, 2] == [(28) 1]
k=0,1,2, n=1,2,..., nZ0mod N
(8)
Key result: commutativity of the flows:
(Lt )ty = (Lt )tn
follows from the YBE for R,.



More on Lax hierarchies on 2
The Lax hierarchies involving finitely many dy-
namical variables u; are obtained within this ap-
proach by choosing a special form of L.

N .
k= 0,1,2:L=%u;D, (9)
j=0
N . 1
k=1,2:L=YuDI+D tou_q, (10)
j=0

N .
2:L=Yu;D!)+D tou 1+ D ?ou 5, (11)
j=0

k

It can be shown that without loss of generality
we can set uy = 1 in (9) and (10).



Is there more than that?

Btaszak and Szablikowski (J. Math. Phys. 2006)

found the following deformations of the above

R-matrices Ry.:

1 1 .
R} = P>k—§—|—ePk_1(-)Dk = §—P<k—|—ePk_1(-)Dk, i.e.,

Ri(L) = P5y(L) — 3L+ ePy_1(L)DF

= 3L — P_x(L) 4+ eP,_1(L)D*, Leq.
Here P, = P> — P51 and € is an arbitrary con-

stant.



Deformed Lax hierarchies

L= e ,1] = [(19),, 4 a0

{ — eP,_1(LN)DF, L] |
n=1,2,..., nZ0modN

(12)
However, for k = 0 and k = 2 Btaszak & Szab-
likowski have shown that these hierarchies can be
reduced to known ones, i.e., the deformations in
question are trivial.
Problem: is this true also for £k =17



Trivializing transformation for k=1
Consider the reciprocal transformation from x and
t;yv 2 =1,2,...,2% 0 mod N to new independent
variables z and r;, + = 1,2,..., where 7, = t,,
1 =1,2,...,7% 0 mod N and z is defined by the
formula

dz = (un) " YNdede S (un) YN Po(LYN)dt,.
g=1,g20 modN
(13)
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Trivializing transformation for £k = 1: continued

Introduce new dependent variables v; related to

u; by means of the formulas

- N —1/N &i
L=Llp_uoyunp= 5 u((uy) VD)
1=——00
_ N—-1 _.
=DN 4+ > D
1——00

(14)

(informally, D is the total z-derivative) and

oy = (un) V. (15)
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Main result
T heorem 1 T he above transformation sends the
hierarchy

L = [R’l(L%),L] = K(L}'@)% ePo(LN)D, L

k=0,1,2, n=1,2,..., n=zx0mod N

into the undeformed k = 1-hierarchy for v;,

Ly, =[P>1(L9,L], ¢=1,2,...,¢#0 mod N,

L N-1
for L = DN+ Y wv,D" along with a hierarchy of
1=—00
equations for vy :

(un)ry = —eD(Po(LUN)), ¢ =1,2,..., ¢ # 0 mod N.
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Example: Extended Broer—Kaup hierarchy
Consider the extended Broer—Kaup system with

L=uD+v+ D 1ow. From
Li, = [P>1(L") + ¢Po(L*) D, L]

with ¢+ = 1,2 we obtain

(w0 ) (euxv — EUVy \

UV + €evvy

\ W )tl \ua;w + vwwy + evew + evwy )

(V)
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Extended Broer—Kaup system

Ut, = eufoQ — 2euVVy — 2€u2wx - equUxx

Vt, = 2uugzw + 2uvvg + 2u2wx + vurvy + UQ’Ugja’;
—|—€UQU33 —+ 2ecuv,w + euv%

Wiy, = 2UgzVW —+ 2uvw + 2uvwy — u%w — 3UuUL W

—UUrzW — U

2

- 2ecvv,w + eupvew + €v

- eUVLWe + EUVLW.

W _I_ 2€Ugjw

2

ng; + decuwwy

Upon setting e = 0 and u = 1 we recover from

the second (¢») flow the standard Kaup—Broer

system
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Transformation to the Broer—Kaup hierarchy

By Theorem 1, pass from x and ¢ > to z and 71 5
defined by the formulas 4 = t1, ™ = to, and

dz = (1/u)dx+e(v/u)dt1+(e/u) (2wutuvg+v2)dts

(we ignore here the times t; with i = 1,2).
We have 0, = (1/u)dz, so L goes into

L = (UD+U—|—D_1 ow) — D—l—v—I—D_lor,

D=(1/u)D

where r = wu.
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Transformation to the Broer—Kaup hierarchy II

We readily see that the transformed hierarchy
ETq: [PZ]_(EQ),E], q:1727°°°7

IS nothing but the standard Broer—Kaup hierarchy
for v,r with the independent variables z and 7,
and we have separated equations for uw which are
linear on the background of this hierarchy:

wr, = —eD(Po(LY/NY)), ¢g=1,2,...

q
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Dispersionless limit

Theorem 1 remains valid if we replace the alge-
bra 2 by its dispersionless (or quasiclassical) limit:
D—np, [,]—1{1} { } is the Poisson bracket:

(f.9} = D(f)gi _ D<g>f}£.

N .
Now L = Y wp’ is a function rather than
1——0
an operator, the reciprocal transformation is the

same: from x and t; we pass to z and 7;, where
. =1t;, 1=1,2,..., where z is defined by

dz = (uy)"YNde 4+ ¢ S (un) YN Po(LYN)dt,.
g=1,g20 modN
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Dispersionless limit II
New dependent variables v; are now related to u;
by means of the formulas

N |
- _ , —1/N =\i
L = L|p=(uN)_1/Nﬁ — izz—:oo uz((uN) p)
N—1 |
=p" + > v,
1——0CCO
l.e..
vi = ui(un) Y, (16)
and

oy = (upy) V. (17)
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Main result for the dispersionless case

Theorem 2 The above transformation sends
= {RY(LY). L} = {(L¥)_| + ePo(LR)p, L)
k:=O,1,2, n=1,2,..., nZ0modN
into the undeformed k = 1-hierarchy for v;,
= {P>1(LY), L}, ¢=1,2,...,¢g% 0 mod N,
for L = v ‘|‘Z@_ Oovzp' Where

along with a hierarchy for VN
(vN)ry = —eD(Po(L9/N)), ¢ =1,2,..., ¢ Z0 mod N.
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Conclusions

All integrable hierarchies constructed using the

deformed R-matrices on 2 given for £k = 0,1,2 by

Rl.(L) = Psp(L) — 3L+ ePy_1(L)D*

— %L — P<k(L) GPk_l(L)Dk, L e,

can be reduced to linear extensions of the unde-
formed (e = 0) hierarchies using suitable changes
of dependent and independent variables. The

same holds for their dispersionless counterparts.
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