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ABSTRACT. This is a step-by—step computation of the 5D Lie algebra
of classical symmetries of the Burgers equation, and of its infinite family
of higher symmetries.
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INTRODUCTION

In the first part of this exercise we compute step—by—step the 5D Lie
algebra of classical symmetries of the Burgers equation. The method is con-
ventional, and consists in repeatedly using the identity principle for poly-
nomials. We stress how the structure of jet spaces, which allows to assign
to a smooth function both an order (i.e., the maximum derivative order it
depends on) and, in the cases of our interest, also a degree (w.r.t. the polyno-
mial dependency on the fiber coordinates), is essential to make the method
effective.

In the second part, the structure of function algebras is examined more
carefully from a theoretical viewpoint, and some results are presented, needed
to estimate the powers of total derivatives (here “estimating” does not mean
to control some norm, but rather the polynomial dependency) which appear
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in the defining equations for higher symmetries. Then we compute the com-
mutator [Gg,ZFH Fe(E) which in turn allows to split the linearized equation
into a system of easier equations; this is done for any equation of the form
ug = P(u, uy, uyzy), and then specialized to the case ® = uy, + f(u,uy). In
this last setting, we introduce the estimates ¢[al, and compute their Jacobi
brackets, stressing that these are not yet solutions of the defining equations,
but rather their approximations modulo some lower—order jet function alge-
bra. Finally, commuting the classical symmetries from the first part with the
orla)’s, we obtain further restrictions on the dependency of ¢g[a] on jet vari-
ables, which eventually leads to a true (i.e., not approximated) expression
for infinitely many higher symmetries.

The computations deliberately follows the scheme used by the computer
algebra program JETS [2], in order to better understand (and appreciate)
the behavior of the software itself.

The material collected here is but an extended exposition of the analogous
exercises which can be found in [I].

1. COMPUTING CLASSICAL SYMMETRIES OF BURGERS EQUATION

On the 8D jet space
J2(R37 2) - {([L’, t: Uy Uy, Uty Uggy Ugct s utt)}
the Lie field with generating function

W e C™(JY(R?,2))

is given by
Xy = — Wy, 00 — W, 0 (1.1)
+ (W —u Wy, — Wy, )0y (1.2)
+ Dl (w)a, (1.3)
+ DM w)a, (1.4)
+ (DEHD[”( ) + e DE (W) + wey DE (W) By (15)

+ (DEDI W) + uee DE (W) + ua D (W) ) Oy (16)

)
+ (PP DI W) + uwDE W) + uaDE W) e (1)
Observe that ([1.1)) is the “shadow” of Xy on the base manifold X = R?,
and (1.1)—(1.2)) is the “shadow” of Xy on JO(R3,2) = R3. This means that
we obtain relative vector fields. On the contrary, (1.1)—(1.4) is a true vector
field on J!(R3,2) = R5.

Compute
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DE(DH(W)) = DE(W, + u, W)
= DN(W,) + ugaWa + ua DE (W)
= Waa + uaWau + Uga Wau, + Utz Wy,
+ Uy Wy
+ tr Wz + e W + Uee Wi, + e Wan,)

and add to it

and

uItDu[z?} (Wut) = Ugt (Wutx + quutu + uszutux + uta:Wutut)

The result consists of 17 terms

Wz + e Weu + Uza Wau, + Uta Wa,

+ Uz Wy

+ Uy Wz + ue Wy + tge W, + e Wan,)

+ Upe Wy + ueWapu + Uea W uy + e Wagu,)
+ Uzt Wz + taWau + UaaWau, + e W,

which can be collected as

+2Upp Ut W, + uithtut

as in |?]| (example 4.1, pag 94).
Let now F' := wu, + uge — us. Then

F, =0
Ft =0
F, = Uy
F., =u
F, =-1
F,, =1
F.., =0
0 =0

hence
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Xw(F) = (W —ugWy, —wuWy,) - s
+ DWW -
+ D) (1)
+ (DDLU W) + e DE (W) + i DE(W,,) ) -1
so that the equation Xy (F) — AF = 0 reads

u W — u?chx — Ugput W,

+ uW, + uu, Wy,

- Wi —wu Wy

+ Uz Wy + W + 20 Wan, + 200 W, + 20t Wy,
+ U W + 2uatlos Wan, + 2attsg Wa, + 12, Wa
+ 20t Wy + 05 Wy,

— A(uug + Uy —ug) =0

zUg

Organize the LHS of last equation as a 2nd order polynomial on J? with
coefficients in J':

(ug W — uiWuz — Uput Wy, + uWy + uu, Wy — Wy — ugWy,

4+ Waew + 20 Wiy + uiWuu — Autg + Aug) (1.8)
+ (Wy 4+ 2Wau, + 2uWen, — ) Ugs (1.9)
+ (2Wau, + 2us W, ) Uzt (1.10)
+ (Wagu,) Uy (1.11)
+ (W) U2y (1.12)
+ (2Wapuy ) UzaUat (1.13)

Since this polynomial has to be identically zero, we obtain
Wuwux = 07 Wutut = 07 Wuwut =0

i.e., W is a 1st order polynomial on J! with coefficients in J°:

W = Au, + Bu; + C, A,B,C € J°(R3,2)=R? (1.14)
Now, from it follows
A=Wy + 2Way, + 2u; W,
= Ayuz + Byus + Cy + 2A, + 2u Ay
= Cy + 24, + 3Aus + Byuy

Also, from (|1.10)), we get

0= qut + Uquut
= B, +u, B,
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i.e. a polynomial on J!, with coefficients in J°, equated to zero. Hence,

ie.,

Consequently,

A=C, +2A, +3A,u;
and (/1.8 gives

0=u,W — u?chx — ugu Wy, +uWy
+ uu Wy — Wi — ugWy + W + 20, Wiy
+ uiWuu + (Cy + 2A, 4+ 3Auuy) (—uuy + uy)

ie.,

0 = ugy(Aug + Bug + C) — u2 A — upuy B + u(Aug + Bug + C),
+ wuy (Auy + Buy + C)y — (Auy + Buy + C)y — uy(Auy + Buy + Oy
+ (Auy + Bug + C) gy + 2uz(Aug + Buy + C) gy,
+ w2 (Aug + Bug + C)y + (Cy + 24, + 3A4u,) (—uty + uyp)

hence

0 = uy(Aug + Bug + C) — u2 A — upguy B + u(Agug + Cy)
+ utg (Ayug + Cy) — (Apug + B'ug + Cp) — wg(Ayug + Cy)
+ (Azatiz + Crz) + 2z (Azutiz + Cou)
+ U2 (Auutts + Cun) + (Cu + 245 + 3Ayug) (—uuy + )

Collecting terms,

0=uC; — Ciy+ Cyy
+ (Ape + C — Ay + 2C5, — uAy)u,
+ (—B'+24,)w
+ (2450 + Cuy — 2uA, U2
+ 2A,ug Uy
+ Aguud

So,
A, =0 (1.15)

and



6 G. MORENO

0=uCy — Ci + Cyy
+ (Ape + C — Ay + 205, — uAy)uy
+ (—B' 4+ 24,)w
+ (Cu )i

whence Cyy, = 0, i.e.,

C=r(z,t)u+s(x,t)
From (|1.17)) follows

0=Ap+ru+s— A+ 2(ru+ 8)zy — uA,
=Ap+s— A +2r,+ (r—Ap)u

(1.20)
(1.21)

Since A, r, s do not depend on u, the last expression is a 1st order poly-

nomial in u, and hence

A, =71
On the other hand, by ,
2r=n,
which is a function of ¢ only, so that
ry =0

and
r=r(t).
Now, from (|1.16]) we obtain

0=uCy — Cy+ Cyy
=u(ru+s)y — (ru+s)t + (ru+ §)zg
= USy — T'U — St + Spg
= =5+ Sgz + (80 — 1")u

whence

St = Szx
Sy = T

Differentiating ((1.25) w.r.t. = we get

Spx =0

and hence, by (|[1.24]),

St = 0
It follows that s = s(z) and s” =0, i.e.,

s(xr) =wx +v, w,veR

(1.22)

(1.23)

(1.26)

(1.27)
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Similarly, by differentiating ((1.25) w.r.t. ¢ we get r” = s,¢, which is zero
by (128), hence

r(t) =wt+n, nelR (1.28)

since ' = s, = w.

Together, (1.27) and (1.28) furnish

C=C(z,t,u) = (wt+n)u+ wz +v (1.29)
Then, because of (1.22]), we obtain A = rz + k, where k = k(t), in view

of (T.19).
We didn’t yet make use of the u—constant part of (1.21f), which gives

0=s5—Ar+2r,
=wz+v—(re+ k)
=wz+v—wxr+Kk

ie., ¥ = v, and so

A=A(z,t) = (wt+n)x+vt+ ko, koeR (1.30)
Finally, (1.23)) implies B’ = 2wt + 2n, i.e.,
B=DB(t)=wt*+2nt+1, 1€R (1.31)

Plugging the results from (1.30]), (1.31)) and (|1.29) into (1.14) we get
W = ((wt+n)z+vt+ko)ug+(wt?+2nt+)ug+(wt+n)utwz+v,  w,v,n, ko, 1 € R

or, equivalently
W =w- (:L”tum + t2ut + tu + x)
+v- (zuy + 2tuy + u)
+n- (tug + 1)
+ko- (uz)
+1- (ue)
i.e., W in an element of the 5D linear subspace of C*°(J!(R3,2))
Sym(€) := Span {:I:tum + up 4+ tu 4z, 2uy + 2wy + u, tug + 1, ug, ut}

Plugging each generator of Sym(€) into (1.1)—(1.4]), we obtain the 5 clas-
sical symmetries of the Burgers equation

(tu + )0, — tzd, — t20;
U0, — x0; — 2t0; scale
Oy — 10y Galilean
Or z—translation

Oy t—translation

2. COMPUTING HIGHER SYMMETRIES OF BURGERS EQUATION

2.1. Preparatory results about evolutionary equations.
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2.1.1. Coordinates. Recall that
J® = J®(R3,2) ={(z,t,u,
Uy, Ut

2.
2.
Uz, Ugt, Wit, 2.
2.

o~ o~ o~ o~

Uggr, Uzat, Uatt, Uttt

)} (2.

where (2.1)) are coordinates on J°(R3,2) = R3, (2.2) are coordinates along
the fibers of m, (2.3) are coordinates along the fibers of w1, (2.4]) are
coordinates along the fibers of 732, and so on so forth.

Let

)
2)
3)
1)

5)

E=F=0, F=u—®u,uz, tuzg) (2.6)

be a 2nd order evolutionary PDE, not depending on x,u, and £ C J* its
infinite prolongation. Observe that

JOO :{(x,t,u, (2 7)
Uy, Ugg, Uggxy - - - (2 8)

Uty Uty Utza, Uty - - - (2 9)

Utt, Utta, Uttza, Uttzzas - - - (2 10)

)} (2.11)

where, again, are coordinates on JO(R3,2) = R3, whereas are the
coordinates along the fibers of 7, o whose corresponding partial derivatives
does not contain any derivative w.r.t. t, are the coordinates along
the fibers of 7 o whose corresponding partial derivatives contains exactly
one derivative w.r.t. t, are the coordinates along the fibers of 7 o
whose corresponding partial derivatives contains exactly two derivatives
w.r.t. ¢, etc.
However, on £°°, we have

Uty = Dy(up) = Dp(P) = up Py + Upe Py + Uiz Py, (2.12)
and, in general,
Utzgew = Do(uy) = DI(P) = function of u, Uy, Upg, ..., Ugpgeq
SN—— SN——
n times “z” 2+n times “a”
(2.13)

In other words, any coordinate from the set (2.9) can be expressed, on £,
as a function of coordinates picked from the set (2.8). Now, in view of (2.13)),

Ut — Dt(ut) = Dt((I)) = Ut(bu + uxt<1>uz + umt@um (214)
is again a function of of coordinates picked from the set (2.8)) and, in general,
Uttzpgz = Dy (u) = function of w, ug, Upg, ..., Ugpg..x (2.15)
— ——
n times “x” 24n times “z”

Hence, also the coordinates from the set (2.10) can be expressed, on £°°, as
functions of the coordinates from the set (2.8]). Continuing in this fashion,
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one realizes that ([2.8]) (together, of course with (2.7)), form a coordinate
system on £°°.

2.1.2. Smooth functions algebras. Recall also that

JOO(R271) = {(1'7])071)17?27”-)} (216)
and that
F(E)=C®(EX) D DFp(&) =C(E)U Coo(Jk) DR (2.17)
is a filtered algebra, i.e.,
F&) = F(&) (2.18)
keN
On the other hand, setting
uyg = u (2.19)
Up = Upp.z (2.20)
——
n times “2”

we obtain a (noncanonical) isomorphism

E® — J®(R%1) xR (2.21)

(z,t,uy Ugy Uggey .. .) —>  ((x,u0,u1,u2,...),1) (2.22)
Consequently, ‘ ‘

Fi(€) D Fi(E) == C=(JF(R?, 1)) - (2.23)

i.e., we can speak of the order of a function ¢ € F(&), which is the smallest
number k such that ¢ € Fi(€), and, if it is polynomial in ¢, also of its degree
(in t). So, Fj(€) is the linear space of functions on £ which have order k
and degree 1.

From now on, we set

0 0
Op = a—un = o (2.24)
n times “z”
in view of . Accordingly,
On 1= On, Yo € F(EX) (2.25)
2.1.3. Total derivatives. So,
0y, 0,09, 01,00, ... ... (2.26)
form a basis of coordinate vector field on £°°.
Accordingly, the z—total derivative restricted to £ reads
Dyleoo = Op + Un410p (2.27)
On the other hand, in view of and , we have
Dy(z) = 0 (2.28)
Dy(t) = 1 (2.29)
Dy(u,) = %—9 = D7 (P) (2.30)

n times “z”

so that by restricting the t—total derivative to £ we obtain
Dilgoo = 0y + D ()0, (2.31)
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Since the restricted z—total derivative (2.27) corresponds to the total deriv-
ative of J*°(R?,1) via isomorphism (£2.21), we shall denote it simply by D.
On the other hand, the restricted t—total derivative (2.31]) will be denoted
by ﬁt.

Lemma 1. If ¢ € F(E) is such that D(¢) =0, then ¢ = ¢(t).

Proof. Thanks to identification ([2.21]), it suffices to prove that a function
¢ € C®(J®(R2,1)) of order k, with D(¢ = 0) must be zero. To this end,

compute
D(¢) = ¢u +urdo + uzr + -+ + prr1x (2.32)

We get a function on J**!'(R2 1) which is polynomial along the fibers of
Tk41,k- D0, since it is zero, all its coefficients must vanish, in particular that
of pr41, which is ¢y. But this contradicts the fact that ¢ has order k. O

The fact that total derivative gain a linear term on higher order jets is the
key of all computation techniques of generating functions.
But what about composition of total derivatives? To this end, recall that

[On, D] = Op—1, Yn >0 (2.33)
Such a property admits a straightforward generalization.

Lemma 2. On Fi(€) it holds

k
fo a a—LF+1
dgo D :Z<a_5+i)D Atic o (2.34)

i=0
where a negative coefficient in the binomial makes it zero.
Proof. See [?]. O
Corollary 3 (Estimate of powers of total derivatives).
D¥(Fx(€)) € Frpr-1(E) - {Ptrs Phtrits s Pht2r}  (2.35)
DU F(€) € Firr—1(E) - ApkarsPhtrits - »Phi2r}  (2.36)

Paraphrasing: D% raises the order of ¢ by «, but the dependency of the
result in the last § orders is linear.

2.1.4. Defining equation. Now compute the universal linearization of ({2.6)):

{p =Dy — &, — ®,,D, — ®,, D> (2.37)

and restrict (2.37)) to £%:

lp =Dy — ®yg— &1D — &yD? (2.38)
Then, a function ¢ € F(€) is a (higher) symmetry for & iff

Di(¢) = Po¢ + 1D(¢) + ®2D*(9) (2.39)
Now compose both sides of (2.38]) on the left with dg, with 8 > 2:

aﬁoZF:ngbt—850@0—850@10D—850<I>20D2 (2.40)

and observe that
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[05,®;] =0, i=0,1,2

hence (2.40]) becomes
5302}7zf)ﬂoﬁt—@()oag—(l)lo@goD—(I)goagoDQ (2.41)
and hence,
dgolp =030D; — Pgods— P10 Ry — Pyo R (2.42)
where

R := 0z o D* (2.43)
Now, recalling the definition (2.31) of Dy, we obtain

ds 0 Dy = 0g o (0 + D™ ()0y,)
=0y 00+ D"(®)0y, 0 95 + Rj3(P)0y,
=Dy o ds + R3(®)0n
So, (2.42) reads

Op olp =D;o Op + Rg(@)@n —®godg—Pr0 R}g —dy0 R% (2.44)

Let us focus on Rg(@). Recalling that ® € F»(€), and applying Lemma
2 we get

my@) = (" )0t (L ) Dt

=0 i=1

+(acbea )0 o

=2

Now, plug (2.45)) into (2.44]), and evaluate the result on ¢ € Fi(€). Re-
calling that ¢, = 0 for n > k, we get

95(Cr(9)) = Di(¢p)
+> [( nfﬁ )Dn_ﬁ(@o) + < n_g+ ) )Dn—6+1(q>1)

+ Q1051+ (B —1)D(P2)dp—1 + P2dp—2 (2.47)
— Bogp — P1RE(G) — P2RE(0) (2.48)

Observe that only the “4 = 0” term of the LHS of (2.45)) is fully accounted
by the the summation n = g,...,k on (2.46)). Concerning the “¢ = 1” term
of the LHS of (2.45)), the n = § — 1 summand appears as the first term of
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(2.47). Finally, the n = 8 —2, 5 — 1 summands of the LHS of (2.45)) appears

as the last two terms of (2.47)).
Again by Lemma[2] we get

Ry = Dodsg+ 05 (2.49)
R} = D?003+2Dods 1+ 0s_2 (2.50)

Then, last equation reads

95(Lr(¢)) = Di(¢s) (2.51)

+3° [( e g )D"‘ﬂ(q>o)+ ( n_gﬂ )D"—ﬂ+1(q>1)

n=

(otos) o

+ Q1951+ (8 —1)D(P2)dp—1 + Podp—2 (2.52)
— Qoo — ©1(D(p) + dp—1) — P2(D*(d5) + 2D (dp—1) + ¢(ﬁ2))
2.53

Notice that the 1st term of cancels with the 3rd term of 7 and
similarly for the 3rd term of the first and the last one of the latter. On the
other hand, the RHS of , combined with the 1st, the 2nd and the 4th
term of produces {p(¢g). Summing up,

9s(lr () = lr(dp)
+n§% K nﬁﬂ >D"5(<I>o) + < n_g+1 >Dn5+1(®1)

+< . > DMH(%)} o
+ (68— 1)D(®2)¢p1
— 202 D(¢p-1) (2.54)

In other words, we've found the following expression for the commutator
(recall 8 > 2)

95,7 7, (e :Z [( n " 38 ) D" (%) + < n _ZJF 1 ) D" (@)

(o)

+ (8= 1)D(22)95-1
— 2‘1)2D o 85_1

2.1.5. The case of ® = uyy + f(u,u,). From now on,

D = ugy + f(u,uy). (2.55)
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It follows
® = fo
o = fi
oy, = 1.

Accordingly, (2.54) reduces to

9p(lr(9)) = lr(dp)

k

e ( 2 ) 2 () P e

~2D(65 1) (256)

Suppose that ¢ € Fi(€) is a symmetry. Then, setting 8 = k + 1, (2.56)
becomes

0= —2D(d). (2.57)
With 3 = k,

0 ="Llp(or) + (fo + ED(f1)) b — 2D(dp—1). (2.58)
Continuing by decreasing 3, we stop with § = 3,

0 =£F(¢3)+é (")t (0 ) 02| en-20060)

(2.59)
Hence, the k—2+1 = k—1 functions ¢, ¢3, ¢4, . . ., ¢i. satisfies the system

of k+1—-3+1=Fk—1 equations (2.57), (2.58)—(2.59).
Observe that, in virtue of Lemma |1, equation (2.57)) dictates strong re-

striction on ¢, namely

P = ag(t). (2.60)
Before continuing, perform the change of variables
Y =280, (2.61)

Plugging (2.60)) into (2.58]) we obtain

D(Wp—1) = Lr(r) + (fo + kD(f1)) Y% (2.62)

Since (p(¢y) = aj, — forbx, last equation reads

D(¢g—1) = aj, + kD(f1)ay. (2.63)
Hence, again by Lemmal[I]

Pp_1 = afcx + kfiar 4+ ap_1 (2.64)

where ax_1 = ag_1(t). Indeed, by applying D to (2.64), we get (2.63).
Together, equations (2.60) and (2.64) forces any symmetry ¢ of order k
to be of the form
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ajx + kfirag + ap—1

¢ = apuy + 9

Uk—1 mod fk_g((‘:). (2.65)

It is convenient to set

apx+kfia+a
et TR Ta.
2

where a, a are arbitrary functions of t. By using Corollary[3] one can compute
the Jacobi bracket

drla) = auy + k-1 (2.66)

{oxla], b} = dpi—2[c]  mod Fiyi—5(E) (2.67)

where

la’b—kba
c= ———

5 (2.68)

2.2. The Burgers equation. Consider now the equation given by f = uuy,,
and recall that the Lie algebra of its classical symmetries is

Sym(€) := Span {xtux + 2y + tu + =, zug + 2w + u, tug + 1, ug, ut}

(2.69)
Rewrite the five generators above in the coordinate of &:
¢} = w (2.70)
¢t = tup+1 (2.71)
) = ug + uguy (2.72)
1 1

b5 = tug + (tug + ix)ul + SU0 (2.73)
¢ = tPuy + (tPug + tx)us +tug + (2.74)

Notice that “gbi:” means that ¢ has order k£ and degree ¢. The symmetries
listed above correspond to the 4th, the 3rd, the 5th, the 2nd and the 1st in
, respectively.

Now the properties of the Jacobi bracket (2.67) and (2.67), combined with
the knowledge of the classical symmetries, allow to clarify the structure of
a higher symmetry ¢ila]. More precisely, being ¢{ of the form ¢1[1] (see

[2.66))), formulae (2.67) and (2.67) give

{olal. of}e = 5= mod Fis(€) (2.75)
So, one may commute k — 2 times the symmetry ¢[a] with ¢!,
0y _\k—2 0 0v. 40 a* Py
({notde)” " (delal) = {{:-{nla], 1}, di}e, d}e = 5~ mod Fi(€).

(2.76)

Hence, modulo F1(£), the symmetry ({-,(]5(1)}5)/’%2 (¢x[a]) must belong to
the above list, so its degree in ¢ cannot exceed 2. It follows that the degree
of ¢ila] in t cannot exceed k.
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So far, we only know which degree should posses a symmetry, provided
it existed. In order to show existence, one need a so—called master sym-
metry, i.e., a symmetry which generates all the remaining ones by means
of Jacobi commutators. In our case, the master symmetry is

T + 3tug 3 r  3tug ud
Thanks to (2.68)), one sees that
3a't — ka
{¢rla], pile = g Ukt mod Fy(&) (2.78)
Hence (recalling that ¢9 is of the form ¢;[1]),
k
({03)e)" () = (=2)"Klugn mod Fi(€) (2.79)

is a symmetry of the form ¢y11[1], i.e., with coefficient of w1 equal to
1, modulo Fi(€) (1st existence result). Finally, such a symmetry can be
used to produce symmetries of the form ¢[t], as follows

({, #3}e) (dpsall]) = Mup  mod Fi,_1(€), A € R (2.80)

and this is the 2nd existence result.
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