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Abstract. This is a step–by–step computation of the 5D Lie algebra
of classical symmetries of the Burgers equation, and of its infinite family
of higher symmetries.
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Introduction

In the first part of this exercise we compute step–by–step the 5D Lie
algebra of classical symmetries of the Burgers equation. The method is con-
ventional, and consists in repeatedly using the identity principle for poly-
nomials. We stress how the structure of jet spaces, which allows to assign
to a smooth function both an order (i.e., the maximum derivative order it
depends on) and, in the cases of our interest, also a degree (w.r.t. the polyno-
mial dependency on the fiber coordinates), is essential to make the method
effective.

In the second part, the structure of function algebras is examined more
carefully from a theoretical viewpoint, and some results are presented, needed
to estimate the powers of total derivatives (here “estimating” does not mean
to control some norm, but rather the polynomial dependency) which appear
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in the defining equations for higher symmetries. Then we compute the com-
mutator [∂β, `F ]

∣∣
Fk(E)

, which in turn allows to split the linearized equation
into a system of easier equations; this is done for any equation of the form
ut = Φ(u, ux, uxx), and then specialized to the case Φ = uxx + f(u, ux). In
this last setting, we introduce the estimates φk[a], and compute their Jacobi
brackets, stressing that these are not yet solutions of the defining equations,
but rather their approximations modulo some lower–order jet function alge-
bra. Finally, commuting the classical symmetries from the first part with the
φk[a]’s, we obtain further restrictions on the dependency of φk[a] on jet vari-
ables, which eventually leads to a true (i.e., not approximated) expression
for infinitely many higher symmetries.

The computations deliberately follows the scheme used by the computer
algebra program Jets [2], in order to better understand (and appreciate)
the behavior of the software itself.

The material collected here is but an extended exposition of the analogous
exercises which can be found in [1].

1. Computing classical symmetries of Burgers equation

On the 8D jet space

J2(R3, 2) = {(x, t, u, ux, ut, uxx, uxt, utt)}

the Lie field with generating function

W ∈ C∞(J1(R3, 2))

is given by

XW =−Wux∂x −Wut∂t (1.1)
+ (W − uxWux − utWut)∂u (1.2)

+D[1]
x (W )∂ux (1.3)

+D
[1]
t (W )∂ut (1.4)

+
(
D[2]
x (D[1]

x (W )) + uxxD
[2]
x (Wux) + uxtD

[2]
x (Wut)

)
∂uxx (1.5)

+
(
D[2]
x (D

[1]
t (W )) + utxD

[2]
x (Wux) + uttD

[2]
t (Wut)

)
∂uxt (1.6)

+
(
D

[2]
t (D

[1]
t (W )) + utxD

[2]
t (Wux) + uttD

[2]
t (Wut)

)
∂utt (1.7)

Observe that (1.1) is the “shadow” of XW on the base manifold X = R2,
and (1.1)–(1.2) is the “shadow” of XW on J0(R3, 2) ≡ R3. This means that
we obtain relative vector fields. On the contrary, (1.1)–(1.4) is a true vector
field on J1(R3, 2) ≡ R5.

Compute
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D[2]
x (D[1]

x (W )) = D[2]
x (Wx + uxWu)

= D[2]
x (Wx) + uxxWu + uxD

[2]
x (Wu)

= Wxx + uxWxu + uxxWxux + utxWxut

+ uxxWu

+ ux (Wux + uxWuu + uxxWuux + utxWuut)

and add to it

uxxD
[2]
x (Wux) = uxx (Wuxx + uxWuxu + uxxWuxux + utxWuxut)

and

uxtD
[2]
x (Wut) = uxt (Wutx + uxWutu + uxxWutux + utxWutut)

The result consists of 17 terms

Wxx + uxWxu + uxxWxux + utxWxut

+ uxxWu

+ ux (Wux + uxWuu + uxxWuux + utxWuut)

+ uxx (Wuxx + uxWuxu + uxxWuxux + utxWuxut)

+ uxt (Wutx + uxWutu + uxxWutux + utxWutut)

which can be collected as

uxxWu +Wxx + 2uxWxu + 2uxxWxux + 2uxtWxut

+u2xWuu + 2uxuxxWuux + 2uxutxWuut + u2xxWuxux

+2uxxutxWuxut + u2xtWutut

as in [?] (example 4.1, pag 94).
Let now F := uux + uxx − ut. Then

Fx = 0
Ft = 0
Fu = ux
Fux = u
Fut = −1
Fuxx = 1
Fuxt = 0
0 = 0

hence
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XW (F ) = (W − uxWux − utWut) · ux
+D[1]

x (W ) · u

+D
[1]
t (W ) · (−1)

+
(
D[2]
x (D[1]

x (W )) + uxxD
[2]
x (Wux) + uxtD

[2]
x (Wut)

)
· 1

so that the equation XW (F )− λF = 0 reads

uxW − u2xWux − uxutWut

+ uWx + uuxWu

−Wt − utWu

+ uxxWu +Wxx + 2uxWxu + 2uxxWxux + 2uxtWxut

+ u2xWuu + 2uxuxxWuux + 2uxutxWuut + u2xxWuxux

+ 2uxxutxWuxut + u2xtWutut

− λ (uux + uxx − ut) = 0

Organize the LHS of last equation as a 2nd order polynomial on J2 with
coefficients in J1:

(uxW − u2xWux − uxutWut + uWx + uuxWu −Wt − utWu

+Wxx + 2uxWxu + u2xWuu − λuux + λut) (1.8)
+ (Wu + 2Wxux + 2uxWuux − λ)uxx (1.9)
+ (2Wxut + 2uxWuut)uxt (1.10)

+ (Wuxux)u2xx (1.11)

+ (Wutut)u
2
xt (1.12)

+ (2Wuxut)uxxuxt (1.13)

Since this polynomial has to be identically zero, we obtain

Wuxux = 0, Wutut = 0, Wuxut = 0

i.e., W is a 1st order polynomial on J1 with coefficients in J0:

W = Aux +But + C, A,B,C ∈ J0(R3, 2) ≡ R3 (1.14)
Now, from (1.9) it follows

λ = Wu + 2Wxux + 2uxWuux

= Auux +Buut + Cu + 2Ax + 2uxAu

= Cu + 2Ax + 3Auux +Buut

Also, from (1.10), we get

0 = Wxut + uxWuut

= Bx + uxBu
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i.e. a polynomial on J1, with coefficients in J0, equated to zero. Hence,

Bx = 0, Bu = 0,

i.e.,
B = B(t)

Consequently,

λ = Cu + 2Ax + 3Auux

and (1.8) gives

0 = uxW − u2xWux − uxutWut + uWx

+ uuxWu −Wt − utWu +Wxx + 2uxWxu

+ u2xWuu + (Cu + 2Ax + 3Auux)(−uux + ut)

i.e.,

0 = ux(Aux +But + C)− u2xA− uxutB + u(Aux +But + C)x

+ uux(Aux +But + C)u − (Aux +But + C)t − ut(Aux +But + C)u

+ (Aux +But + C)xx + 2ux(Aux +But + C)xu

+ u2x(Aux +But + C)uu + (Cu + 2Ax + 3Auux)(−uux + ut)

hence

0 = ux(Aux +But + C)− u2xA− uxutB + u(Axux + Cx)

+ uux(Auux + Cu)− (Atux +B′ut + Ct)− ut(Auux + Cu)

+ (Axxux + Cxx) + 2ux(Axuux + Cxu)

+ u2x(Auuux + Cuu) + (Cu + 2Ax + 3Auux)(−uux + ut)

Collecting terms,

0 = uCx − Ct + Cxx

+ (Axx + C −At + 2Cxu − uAx)ux

+ (−B′ + 2Ax)ut

+ (2Axu + Cuu − 2uAu)u2x
+ 2Auuxut

+Auuu
3
x

So,
Au = 0 (1.15)

and
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0 = uCx − Ct + Cxx (1.16)
+ (Axx + C −At + 2Cxu − uAx)ux (1.17)

+ (−B′ + 2Ax)ut (1.18)

+ (Cuu)u2x (1.19)

whence Cuu = 0, i.e.,

C = r(x, t)u+ s(x, t)

From (1.17) follows

0 = Axx + ru+ s−At + 2(ru+ s)xu − uAx (1.20)
= Axx + s−At + 2rx + (r −Ax)u (1.21)

Since A, r, s do not depend on u, the last expression is a 1st order poly-
nomial in u, and hence

Ax = r (1.22)
On the other hand, by (1.18),

2r = B′, (1.23)

which is a function of t only, so that

rx = 0

and
r = r(t).

Now, from (1.16) we obtain

0 = uCx − Ct + Cxx

= u(ru+ s)x − (ru+ s)t + (ru+ s)xx

= usx − r′u− st + sxx

= −st + sxx + (sx − r′)u
whence

st = sxx (1.24)
sx = r′ (1.25)

Differentiating (1.25) w.r.t. x we get

sxx = 0

and hence, by (1.24),

st = 0 (1.26)
It follows that s = s(x) and s′′ = 0, i.e.,

s(x) = wx+ v, w, v ∈ R (1.27)
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Similarly, by differentiating (1.25) w.r.t. t we get r′′ = sxt, which is zero
by (1.26), hence

r(t) = wt+ n, n ∈ R (1.28)
since r′ = sx = w.

Together, (1.27) and (1.28) furnish

C = C(x, t, u) = (wt+ n)u+ wx+ v (1.29)

Then, because of (1.22), we obtain A = rx + k, where k = k(t), in view
of (1.15).

We didn’t yet make use of the u–constant part of (1.21), which gives

0 = s−At + 2rx

= wx+ v − (rx+ k)t

= wx+ v − wx+ k′

i.e., k′ = v, and so

A = A(x, t) = (wt+ n)x+ vt+ k0, k0 ∈ R (1.30)

Finally, (1.23) implies B′ = 2wt+ 2n, i.e.,

B = B(t) = wt2 + 2nt+ l, l ∈ R (1.31)

Plugging the results from (1.30), (1.31) and (1.29) into (1.14) we get

W = ((wt+n)x+vt+k0)ux+(wt2+2nt+l)ut+(wt+n)u+wx+v, w, v, n, k0, l ∈ R
or, equivalently

W = w·
(
xtux + t2ut + tu+ x

)
+v· (xux + 2tut + u)

+n· (tux + 1)

+k0· (ux)

+l· (ut)

i.e., W in an element of the 5D linear subspace of C∞(J1(R3, 2))

Sym(E) := Span
{
xtux + t2ut + tu+ x, xux + 2tut + u, tux + 1, ux, ut

}
Plugging each generator of Sym(E) into (1.1)–(1.4), we obtain the 5 clas-

sical symmetries of the Burgers equation

(tu+ x)∂u − tx∂x − t2∂t
u∂u − x∂x − 2t∂t scale

∂u − t∂x Galilean
∂x x–translation
∂t t–translation

2. Computing higher symmetries of Burgers equation

2.1. Preparatory results about evolutionary equations.
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2.1.1. Coordinates. Recall that

J∞ := J∞(R3, 2) ={(x, t, u, (2.1)
ux, ut (2.2)
uxx, uxt, utt, (2.3)
uxxx, uxxt, uxtt, uttt (2.4)
... )} (2.5)

where (2.1) are coordinates on J0(R3, 2) ≡ R3, (2.2) are coordinates along
the fibers of π1,0, (2.3) are coordinates along the fibers of π2,1, (2.4) are
coordinates along the fibers of π3,2, and so on so forth.

Let
E := F = 0, F = ut − Φ(u, ux, uxx) (2.6)

be a 2nd order evolutionary PDE, not depending on x, u, and E∞ ⊆ J∞ its
infinite prolongation. Observe that

J∞ ={(x, t, u, (2.7)
ux, uxx, uxxx, . . . (2.8)
ut, utx, utxx, utxxx, . . . (2.9)
utt, uttx, uttxx, uttxxx, . . . (2.10)
... )} (2.11)

where, again, (2.7) are coordinates on J0(R3, 2) ≡ R3, whereas (2.8) are the
coordinates along the fibers of π∞,0 whose corresponding partial derivatives
does not contain any derivative w.r.t. t, (2.9) are the coordinates along
the fibers of π∞,0 whose corresponding partial derivatives contains exactly
one derivative w.r.t. t, (2.10) are the coordinates along the fibers of π∞,0
whose corresponding partial derivatives contains exactly two derivatives
w.r.t. t, etc.

However, on E∞, we have

utx = Dx(ut) = Dx(Φ) = uxΦu + uxxΦux + uxxxΦuxx (2.12)

and, in general,

utxx···x︸ ︷︷ ︸
n times “x”

= Dn
x(ut) = Dn

x(Φ) = function of u, ux, uxx, . . . , uxx···x︸ ︷︷ ︸
2+n times “x”

(2.13)
In other words, any coordinate from the set (2.9) can be expressed, on E∞,
as a function of coordinates picked from the set (2.8). Now, in view of (2.13),

utt = Dt(ut) = Dt(Φ) = utΦu + uxtΦux + uxxtΦuxx (2.14)

is again a function of of coordinates picked from the set (2.8) and, in general,

uttxx···x︸ ︷︷ ︸
n times “x”

= Dn
x (utt) = function of u, ux, uxx, . . . , uxx···x︸ ︷︷ ︸

2+n times “x”

(2.15)

Hence, also the coordinates from the set (2.10) can be expressed, on E∞, as
functions of the coordinates from the set (2.8). Continuing in this fashion,
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one realizes that (2.8) (together, of course with (2.7)), form a coordinate
system on E∞.

2.1.2. Smooth functions algebras. Recall also that

J∞(R2, 1) = {(x, p0, p1, p2, . . .)} (2.16)

and that

F(E) := C∞(E∞) ⊇ · · · ⊇ Fk(E) := C∞(E∞) ∪ C∞(Jk) ⊇ · · · (2.17)

is a filtered algebra, i.e.,
F(E) =

⋃
k∈N
Fk(E) (2.18)

On the other hand, setting

u0 := u (2.19)
un := uxx···x︸ ︷︷ ︸

n times “x”

(2.20)

we obtain a (noncanonical) isomorphism

E∞ −→ J∞(R2, 1)× R (2.21)
(x, t, u, ux, uxx, . . .) 7−→ ((x, u0, u1, u2, . . .), t) (2.22)

Consequently,
Fk(E) ⊇ F ik(E) := C∞(Jk(R2, 1)) · ti (2.23)

i.e., we can speak of the order of a function φ ∈ F(E), which is the smallest
number k such that φ ∈ Fk(E), and, if it is polynomial in t, also of its degree
(in t). So, F ik(E) is the linear space of functions on E which have order k
and degree i.

From now on, we set

∂n :=
∂

∂un
≡ ∂

∂uxx···x︸ ︷︷ ︸
n times “x”

(2.24)

in view of (2.20). Accordingly,

φn := ∂nφ, ∀φ ∈ F(E∞) (2.25)

2.1.3. Total derivatives. So,

∂x, ∂t, ∂0, ∂1, ∂2, . . . ... (2.26)

form a basis of coordinate vector field on E∞.
Accordingly, the x–total derivative restricted to E∞ reads

Dx|E∞ = ∂x + un+1∂n (2.27)

On the other hand, in view of (2.13) and (2.20), we have

Dt(x) = 0 (2.28)
Dt(t) = 1 (2.29)

Dt(un) = utxx···x︸ ︷︷ ︸
n times “x”

= Dn
x(Φ) (2.30)

so that by restricting the t–total derivative to E∞ we obtain

Dt|E∞ = ∂t +Dn
x(Φ)∂n (2.31)
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Since the restricted x–total derivative (2.27) corresponds to the total deriv-
ative of J∞(R2, 1) via isomorphism (2.21), we shall denote it simply by D.
On the other hand, the restricted t–total derivative (2.31) will be denoted
by Dt.

Lemma 1. If φ ∈ F(E) is such that D(φ) = 0, then φ = φ(t).

Proof. Thanks to identification (2.21), it suffices to prove that a function
φ ∈ C∞(J∞(R2, 1)) of order k, with D(φ = 0) must be zero. To this end,
compute

D(φ) = φx + u1φ0 + u2φ1 + · · ·+ pk+1φk (2.32)
We get a function on Jk+1(R2, 1) which is polynomial along the fibers of
πk+1,k. So, since it is zero, all its coefficients must vanish, in particular that
of pk+1, which is φk. But this contradicts the fact that φ has order k. �

The fact that total derivative gain a linear term on higher order jets is the
key of all computation techniques of generating functions.

But what about composition of total derivatives? To this end, recall that

[∂n, D] = ∂n−1, ∀n > 0 (2.33)

Such a property admits a straightforward generalization.

Lemma 2. On Fk(E) it holds

∂β ◦Dα =
k∑
i=0

(
α

α− β + i

)
Dα−β+i ◦ ∂i (2.34)

where a negative coefficient in the binomial makes it zero.

Proof. See [?]. �

Corollary 3 (Estimate of powers of total derivatives).

D2r(Fk(E)) ⊆ Fk+r−1(E) · {p2k+r, pk+r+1, . . . , pk+2r} (2.35)

D2r+1(Fk(E)) ⊆ Fk+r−1(E) · {pk+r, pk+r+1, . . . , pk+2r} (2.36)

Paraphrasing: Dα raises the order of φ by α, but the dependency of the
result in the last α

2 orders is linear.

2.1.4. Defining equation. Now compute the universal linearization of (2.6):

`F = Dt − Φu − ΦuxDx − ΦuxxD
2
x (2.37)

and restrict (2.37) to E∞:

`F = Dt − Φ0 − Φ1D − Φ2D
2 (2.38)

Then, a function φ ∈ F(E) is a (higher) symmetry for E iff

Dt(φ) = Φ0φ+ Φ1D(φ) + Φ2D
2(φ) (2.39)

Now compose both sides of (2.38) on the left with ∂β , with β > 2:

∂β ◦ `F = ∂β ◦Dt − ∂β ◦ Φ0 − ∂β ◦ Φ1 ◦D − ∂β ◦ Φ2 ◦D2 (2.40)

and observe that
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[∂β,Φi] = 0, i = 0, 1, 2

hence (2.40) becomes

∂β ◦ `F = ∂β ◦Dt − Φ0 ◦ ∂β − Φ1 ◦ ∂β ◦D − Φ2 ◦ ∂β ◦D2 (2.41)

and hence,

∂β ◦ `F = ∂β ◦Dt − Φ0 ◦ ∂β − Φ1 ◦R1
β − Φ2 ◦R2

β (2.42)
where

Rαβ := ∂β ◦Dα (2.43)

Now, recalling the definition (2.31) of Dt, we obtain

∂β ◦Dt = ∂β ◦ (∂t +Dn(Φ)∂n)

= ∂t ◦ ∂β +Dn(Φ)∂n ◦ ∂β +Rnβ(Φ)∂n

= Dt ◦ ∂β +Rnβ(Φ)∂n

So, (2.42) reads

∂β ◦ `F = Dt ◦ ∂β +Rnβ(Φ)∂n − Φ0 ◦ ∂β − Φ1 ◦R1
β − Φ2 ◦R2

β (2.44)

Let us focus on Rnβ(Φ). Recalling that Φ ∈ F2(E), and applying Lemma
2, we get

Rnβ(Φ) =

(
n

n− β

)
Dn−β(Φ0)︸ ︷︷ ︸

i=0

+

(
n

n− β + 1

)
Dn−β+1(Φ1)︸ ︷︷ ︸

i=1

+

(
n

n− β + 2

)
Dn−β+2(Φ2)︸ ︷︷ ︸

i=2

(2.45)

Now, plug (2.45) into (2.44), and evaluate the result on φ ∈ Fk(E). Re-
calling that φn = 0 for n > k, we get

∂β(`F (φ)) = Dt(φβ)

+
k∑

n=β

[(
n

n− β

)
Dn−β(Φ0) +

(
n

n− β + 1

)
Dn−β+1(Φ1)

+

(
n

n− β + 2

)
Dn−β+2(Φ2)

]
φn (2.46)

+ Φ1φβ−1 + (β − 1)D(Φ2)φβ−1 + Φ2φβ−2 (2.47)

− Φ0φβ − Φ1R
1
β(φ)− Φ2R

2
β(φ) (2.48)

Observe that only the “i = 0” term of the LHS of (2.45) is fully accounted
by the the summation n = β, . . . , k on (2.46). Concerning the “i = 1” term
of the LHS of (2.45), the n = β − 1 summand appears as the first term of
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(2.47). Finally, the n = β− 2, β− 1 summands of the LHS of (2.45) appears
as the last two terms of (2.47).

Again by Lemma 2, we get

R1
β = D ◦ ∂β + ∂β−1 (2.49)

R2
β = D2 ◦ ∂β + 2D ◦ ∂β−1 + ∂β−2 (2.50)

Then, last equation reads

∂β(`F (φ)) = Dt(φβ) (2.51)

+
k∑

n=β

[(
n

n− β

)
Dn−β(Φ0) +

(
n

n− β + 1

)
Dn−β+1(Φ1)

+

(
n

n− β + 2

)
Dn−β+2(Φ2)

]
φn

+ Φ1φβ−1 + (β − 1)D(Φ2)φβ−1 + Φ2φβ−2 (2.52)

− Φ0φβ − Φ1(D(φβ) + φβ−1)− Φ2(D
2(φβ) + 2D(φβ−1) + φβ−2)

(2.53)

Notice that the 1st term of (2.52) cancels with the 3rd term of (2.53), and
similarly for the 3rd term of the first and the last one of the latter. On the
other hand, the RHS of (2.51), combined with the 1st, the 2nd and the 4th
term of (2.53) produces `F (φβ). Summing up,

∂β(`F (φ)) = `F (φβ)

+
k∑

n=β

[(
n

n− β

)
Dn−β(Φ0) +

(
n

n− β + 1

)
Dn−β+1(Φ1)

+

(
n

n− β + 2

)
Dn−β+2(Φ2)

]
φn

+ (β − 1)D(Φ2)φβ−1

− 2Φ2D(φβ−1) (2.54)

In other words, we’ve found the following expression for the commutator
(recall β > 2)

[∂β, `F ]
∣∣
Fk(E)

=
k∑

n=β

[(
n

n− β

)
Dn−β(Φ0) +

(
n

n− β + 1

)
Dn−β+1(Φ1)

+

(
n

n− β + 2

)
Dn−β+2(Φ2)

]
∂n

+ (β − 1)D(Φ2)∂β−1

− 2Φ2D ◦ ∂β−1

2.1.5. The case of Φ = uxx + f(u, ux). From now on,

Φ = uxx + f(u, ux). (2.55)
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It follows

Φ0 = f0

Φ1 = f1

Φ2 = 1.

Accordingly, (2.54) reduces to

∂β(`F (φ)) = `F (φβ)

+
k∑

n=β

[(
n

n− β

)
Dn−β(f0) +

(
n

n− β + 1

)
Dn−β+1(f1)

]
φn

− 2D(φβ−1). (2.56)

Suppose that φ ∈ Fk(E) is a symmetry. Then, setting β = k + 1, (2.56)
becomes

0 = −2D(φk). (2.57)
With β = k,

0 = `F (φk) + (f0 + kD(f1))φk − 2D(φk−1). (2.58)
Continuing by decreasing β, we stop with β = 3,

0 = `F (φ3)+

k∑
n=3

[(
n

n− 3

)
Dn−3(f0) +

(
n

n− 2

)
Dn−2(f1)

]
φn−2D(φ2).

(2.59)
Hence, the k−2+1 = k−1 functions φ2, φ3, φ4, . . . , φk satisfies the system

of k + 1− 3 + 1 = k − 1 equations (2.57), (2.58)–(2.59).
Observe that, in virtue of Lemma 1, equation (2.57) dictates strong re-

striction on φk, namely

φk = ak(t). (2.60)
Before continuing, perform the change of variables

ψn := 2k−nφn. (2.61)

Plugging (2.60) into (2.58) we obtain

D(ψk−1) = `F (ψk) + (f0 + kD(f1))ψk. (2.62)
Since `F (ψk) = a′k − f0ψk, last equation reads

D(ψk−1) = a′k + kD(f1)ak. (2.63)
Hence, again by Lemma 1,

ψk−1 = a′kx+ kf1ak + ak−1 (2.64)
where ak−1 = ak−1(t). Indeed, by applying D to (2.64), we get (2.63).

Together, equations (2.60) and (2.64) forces any symmetry φ of order k
to be of the form
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φ ≡ akuk +
a′kx+ kf1ak + ak−1

2
uk−1 mod Fk−2(E). (2.65)

It is convenient to set

φk[a] := auk +
a′kx+ kf1a+ a

2
uk−1 (2.66)

where a, a are arbitrary functions of t. By using Corollary 3, one can compute
the Jacobi bracket

{φk[a], φl[b]}E ≡ φk+l−2[c] mod Fk+l−3(E) (2.67)

where

c =
la′b− kb′a

2
(2.68)

2.2. The Burgers equation. Consider now the equation given by f = uux,
and recall that the Lie algebra of its classical symmetries is

Sym(E) := Span
{
xtux + t2ut + tu+ x, xux + 2tut + u, tux + 1, ux, ut

}
(2.69)

Rewrite the five generators above in the coordinate of E :

φ01 := u1 (2.70)
φ11 := tu1 + 1 (2.71)
φ02 := u2 + u0u1 (2.72)

φ12 := tu2 + (tu0 +
1

2
x)u1 +

1

2
u0 (2.73)

φ22 := t2u2 + (t2u0 + tx)u1 + tu0 + x (2.74)

Notice that “φik” means that φ has order k and degree i. The symmetries
listed above correspond to the 4th, the 3rd, the 5th, the 2nd and the 1st in
(2.69), respectively.

Now the properties of the Jacobi bracket (2.67) and (2.67), combined with
the knowledge of the classical symmetries, allow to clarify the structure of
a higher symmetry φk[a]. More precisely, being φ01 of the form φ1[1] (see
(2.66)), formulae (2.67) and (2.67) give

{φk[a], φ01}E ≡
a′uk−1

2
mod Fk−2(E) (2.75)

So, one may commute k − 2 times the symmetry φk[a] with φ01,(
{·, φ01}E

)k−2
(φk[a]) = {{· · · {φk[a], φ01}E , · · ·φ01}E , φ01}E ≡

a(k−2)u2
2k−2

mod F1(E).

(2.76)
Hence, modulo F1(E), the symmetry

(
{·, φ01}E

)k−2
(φk[a]) must belong to

the above list, so its degree in t cannot exceed 2. It follows that the degree
of φk[a] in t cannot exceed k.
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So far, we only know which degree should posses a symmetry, provided
it existed. In order to show existence, one need a so–called master sym-
metry, i.e., a symmetry which generates all the remaining ones by means
of Jacobi commutators. In our case, the master symmetry is

φ13 = tu3 +
x+ 3tu0

2
u2 +

3

2
tu21 +

(
x

2
+

3tu0
4

)
u0u1 +

u20
4

(2.77)

Thanks to (2.68), one sees that

{φk[a], φ13}E ≡
3a′t− ka

2
uk+1 mod Fk(E) (2.78)

Hence (recalling that φ01 is of the form φ1[1]),(
{·, φ13}E

)k
(φ01) ≡ (−2)kk!uk+1 mod Fk(E) (2.79)

is a symmetry of the form φk+1[1], i.e., with coefficient of uk+1 equal to
1, modulo Fk(E) (1st existence result). Finally, such a symmetry can be
used to produce symmetries of the form φk[t

i], as follows(
{·, φ22}E

)i
(φk+1[1]) ≡ λtiuk mod Fk−1(E), λ ∈ R (2.80)

and this is the 2nd existence result.
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