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Introduction

Let g be a Lie algebra of (holomorphic) vector fields on the (complex) manifold M .
I What are the g-invariant submanifolds?

I What are the g-invariant hypersurfaces?
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Example

Let M = R2(x, y) and take the Lie algebra g = 〈X = x∂x − y∂y〉 corresponding to the
group action (x, y) 7→ (tx, t−1y), t ∈ R \ {0}.

Figure: Orbits of g.

Absolute invariant: I = xy.

I Invariant hypersurfaces: {I = C} ⊂M , C ∈ R.

I Solution to linear PDE system: X(I) = 0.
I Well understood in several settings:

I local smooth: Frobenius’ theorem
I global algebraic: Rosenlicht’s theorem

Relative invariants: R1 = x,R2 = y.

I Invariant hypersurfaces: {R1 = 0} and {R2 = 0}.
I Solution to X(R) = λ(X)R, with λ(X) = ±1.

I ∃ some results in the local smooth setting.



Relative invariants

Definition

A relative invariant wrt. g ⊂ D(M) is a function f ∈ O(M) satisfying

X(f) = λ(X)f, ∀X ∈ g,

for some λ ∈ g∗ ⊗O(M). We call λ the weight of f .

λ([X,Y ])f = [X,Y ](f) = X(Y (f))− Y (X(f)) = (X(λ(Y ))− Y (λ(X)))f

for each pair X,Y ∈ g. Thus, the weight of a relative invariant satisfies

(d1λ)(X,Y ) := X(λ(Y ))− Y (λ(X))− λ([X,Y ]) = 0.

Furthermore, for µ ∈ O(M),

X(eµf) = X(µ)eµf + eµλ(X)f = (X(µ) + λ(X))eµf,

meaning that the difference between weights of the two equivalent relative invariants is

(d0µ)(X) := X(µ).



Chevalley-Eilenberg cohomology
The Chevalley-Eilenberg complex of g with coefficients in O(M):

O(M)
d0−→g∗ ⊗O(M)

d1−→ Λ2g∗ ⊗O(M)
d2−→ · · ·

(d0µ)(X) := X(µ)

(d1λ)(X,Y ) := X(λ(Y ))− Y (λ(X))− λ([X,Y ])

Weights of relative invariants are elements in

H1(g,O(M)) =
ker(d1)

im(d0)
.

Small modification: If µ ∈ O(M)× is a nonvanishing function, then

X(µf) = X(µ)f + µX(f) = (X(µ) + µλ(X))f =

(
X(µ)

µ
+ λ(X)

)
µf.

O×(M)
d0 log−−−→ g∗ ⊗O(M)

d1−→ Λ2g∗ ⊗O(M)
d2−→ · · ·



Example

M = C1, g = 〈X = x∂x, Y = x2∂x〉.

Use notation λ(X) = a(x), λ(Y ) = b(x) for a representative of [λ] ∈ H1(g,O(M)).

(λ− d0µ)(X) = a(x)− xµ′(x)

By subtracting a coboundary, we set a(x) = A1 ∈ C.

X(b)− Y (a) = λ([X,Y ]) = λ(Y ) = b ⇔ xb′(x) = b(x)

Has solution b(x) = A2x, A2 ∈ C. H1(g,O(M)) = C2.

The general relative invariant is given by R = xA1 . It has weight

λ(X) = A1, λ(Y ) = A1x. (A1 = A2)

Not all elements of H1(g,O(M)) are realized as weights of relative invariants.



Lift of g to M × C

Construct the lift

ĝλ = {X̂ = X + λ(X)u∂u | X ∈ g} ⊂ D(M × C).

I [̂X,Y ] = [X̂, Ŷ ] ⇔ λ ∈ ker(d1).

I Changing fiber coordinate, ũ = µu, gives equivalence relation:

λ ∼ λ̃ = λ+ d0 logµ.

Conclusion: H1(g,O(M)) can be identified with the space of lifts of g to M × C.

If f is a relative invariant with weight λ, and ĝλ the corresponding lift to M × C, then
u = Cf is a ĝλ-invariant section of M × C.



Realizability of weight
Given [λ] ∈ H1(g,O(M)), when does there exist a relative invariant f with weight λ?
The answer is given (in local smooth setting) by Fels and Olver (1997).

Construct the lift

ĝλ = {X̂ = X + λ(X)u∂u | X ∈ g} ⊂ D(M × C).

If f is a relative invariant (X(f) = λ(X)f) then

X̂(u/f) =
X̂(u)f − uX̂(f)

f2
=
u(λ(X)f −X(f))

f2
= 0,

implying that u/f is an absolute invariant.

Theorem

If there exists a relative invariant f with weight λ, then the dimension of generic
g-orbits on M is equal to the dimension of generic ĝλ-orbits on M × C.



Line bundles over M

Any holomorphic line bundle π : L→M is locally trivial: There exists cover U = {Uα}
such that π−1(Uα) ' Uα × C. The line bundle is uniquely defined through its
(holomorphic) transition functions:

gαβ : Uα ∩ Uβ → C×.∏
α

O×(Uα)
δ0−→
∏
α 6=β
O×(Uα ∩ Uβ)

δ1−→
∏

α 6=β 6=γ 6=α
O×(Uα ∩ Uβ ∩ Uγ) −→ · · ·

(δ0µ)αβ = µα/µβ, µ = {µα} ∈
∏
α

O×(Uα),

(δ1ν)αβγ = ναγ/(ναβνβγ), ν = {ναβ} ∈
∏
α 6=β
O×(Uα ∩ Uβ).

The collection g = {gαβ} represents an element of Ȟ1(U ,O×) = ker(δ1)/im(δ0).
There is a group isomorphism Pic(M) ' Ȟ1(M,O×) := lim−→ Ȟ1(U ,O×), with the
Picard group Pic(M) being the group of line bundles.



Divisors on M

Any holomorphic hypersurface in M can be defined locally as the zeros of a
holomorphic function.

A divisor D on M is a global section of the quotient sheafM×/O×. It can be given on
some open cover U = {Uα} as a collection {fα ∈M×(Uα)} of meromorphic functions,
such that fβ/fα ∈ O×(Uα ∩ Uβ), where fα is defined only up to a factor of O×(Uα).

Div(M)→ Pic(M)

D = {fα} 7→ [D] defined by transition functions gαβ = fα/fβ

The divisor D = {fα} defines a meromorphic section of [D]: x 7→ (x, fα(x)) on
Uα × C.

Idea: g-invariant hypersurfaces are given by g-invariant divisors, or sections of
g-equivariant line bundles.



g-equivariant line bundles

Definition

Let g be a Lie algebra of vector fields on M . A g-equivariant line bundle over M is a
pair (π, ĝ) where π : L→M is a line bundle and ĝ is a lift of g to L.

Locally, line bundles are trivial: π−1(Uα) ' Uα × C. Lifts in these local charts are of
the form ĝ|Uα = {X|Uα + λα(X)u∂u | X ∈ g}.

Local lifts: λ = {λα} ∈
∏
α

g∗ ⊗O(Uα), d1λ = 0.

Trans. functions: g = {gαβ} ∈
∏
α,β

O×(Uαβ), δ1g = 0.

On Uαβ := Uα ∩ Uβ:

X + λα(X)uα∂uα = X + λβ(X)uβ∂uβ

uα = gαβuβ ⇒ X + λα(X)uα∂uα = X + (λα(X)−X(gαβ)/gαβ)uβ∂uβ

Compatibility: λα(X)− λβ(X) = X(gαβ)/gαβ, ∀X ∈ g,



Double complex

A g-equivariant line bundle is given by a pair (g, λ) satisfying

d1λ = 0, δ1g = 0, δ0λ = d0 log g.

∏
αO×(Uα)

∏
α(g∗ ⊗O(Uα))

∏
α(Λ2g∗ ⊗O(Uα))

∏
α,β O×(Uαβ)

∏
α,β,γ O×(Uαβγ)

d0 log d1 d2

δ0

δ1

δ2
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The corresponding total complex

A g-equivariant line bundle is given by a pair (g, λ) satisfying

d1,0λ = 0, δ0,1g = 0, δ1,0λ = d0,1g.

C0,0 C1,0 C2,0

C0,1 C1,1 C2,1

C0,2 C1,2

δ0,0

δ0,1

d0,0 d1,0

d0,1 d1,1

d0,2

δ1,0

δ1,1

δ2,0

δ0,2 δ1,2

d1,2

δ2,1

d2,0

d2,1

Totr(C) =
∏

r=p+q

Cp,q, ∂r =
∑
p+q=r

(dp,q + (−1)pδp,q) : Totr(C)→ Totr+1(C).



The corresponding total complex

Totr(C) =
∏

r=p+q

Cp,q, ∂r =
∑
p+q=r

(dp,q + (−1)pδp,q) : Totr(C)→ Totr+1(C).

I A line bundle is given by a ∂1-cocycle (g, λ) ∈ Tot1(C).

I The equivalence relation (g, λ) ∼ (g, λ) + ∂0(µ) = (g · δ0,0µ, λ+ d0,0µ)
corresponds exactly to the freedom in the fiber coordinate ũα = µαuα:

ũα = µαuα = µαgαβuβ =
µα
µβ
gαβũβ



g-equivariant line bundles

Denote the group of g-equivariant line bundles by Picg(M). If the cover {Uα} is
sufficiently nice, then Picg(M) ' H1(Tot•(C)) = ker(∂1)/im(∂0).

More generally:

Theorem

Picg(M) ' H1(g,O) := lim−→H1(Tot•(C)).

H1(g,O) is called the first hypercohomology of the Chevalley-Eilenberg sheaf complex

O× → g∗ ⊗O → Λ2g∗ ⊗O → · · · .



Example

M = CP 1, g = 〈X,Y 〉, U0 ' C1(x), U∞ ' C1(y), y = 1/x.

The vector fields are given by:

X|U0 = x∂x, Y |U0 = x2∂x, X|U∞ = −y∂y, Y |U∞ = −∂y.

Representatives of elements [λ0] ∈ H1(g,O(U0)) and [λ∞] ∈ H1(g,O(U∞)):

λ0(X) = A1, λ0(Y ) = A2x, λ∞(X) = B1, λ∞(Y ) = 0.

Compatibility:

λ0(X)− λ∞(X) = X(g0∞)/g0∞, λ0(Y )− λ∞(Y ) = Y (g0∞)/g0∞,

(A1 −B1)g0∞ = x∂x(g0∞), A2xg0∞ = x2∂x(g0∞).

We get B1 = A1 −A2 and g0∞ = xA2 , A2 ∈ Z. In other words, Picg(M) ' C× Z.



g-invariant divisors

Definition

A divisor D = {fα} is g-invariant if there exists an element λ = {λα} ∈ C1,0 such that
for each α

X(fα) = λα(X)fα, ∀X ∈ g.

Theorem

Let g be a Lie algebra of vector fields on M , and let D = {fα} be a g-invariant divisor
with weight λ = {λα}. The pair (g, λ) defines a g-equivariant line bundle, where
gαβ = fα/fβ. In other words, there is a map:

Divg(M)→ Picg(M).



Example

M = CP 1, g = 〈X,Y 〉, U0 ' C1(x), U∞ ' C1(y), y = 1/x.

X|U0 = x∂x, Y |U0 = x2∂x, X|U∞ = −y∂y, Y |U∞ = −∂y.

Representatives of elements [λ0] ∈ H1(g,O(U0)) and [λ∞] ∈ H1(g,O(U∞)):

λ0(X) = A1, λ0(Y ) = A2x, λ∞(X) = B1, λ∞(Y ) = 0.

From the compatibility condition, we get B1 = A1 −A2 and g0∞ = xA2 , A2 ∈ Z.

ĝ|U∞ = 〈−y∂y + (A1 −A2)u∂u, −∂y〉

A necessary condition for invariant divisors to exist is that the generic orbit dimension
of ĝ is the same as that of g: in this case A1 = A2. The general invariant divisor is

f0 = xA2 , f∞ = 1, A2 = A1 ∈ Z.

Divg(M) ' Z, Picg(M) ' C× Z.



Differential invariants of curves in CP 2

Choose open chart U1 = {[u : v : w] ∈ CP 2 | w 6= 0}, and coordinates
x = u/w, y = v/w. Then choose y as “dependent variable”. This gives coordinate
chart U1y ' C3(x, y, y1) of J1(CP 2, 1). The basis of sl(3,C):

X1 = ∂x, X2 = ∂y, X3 = y∂x − y21∂y1 , X4 = x∂y + ∂y1 , X5 = x∂x − y∂y − 2y1∂y1 ,

X6 = x∂x + y∂y, X7 = x2∂x + xy∂y + (y − xy1)∂y1 , X8 = xy∂x + y2∂y + (y − xy1)y1∂y1 .

The general element [λ] ∈ H1(sl(3,C),O(U1y)) is given by

λ(X1) = 0, λ(X2) = 0, λ(X3) = A1y1, λ(X4) = 0, λ(X5) = A1,

λ(X6) = A2, λ(X7) =
3A2 +A1

2
x, λ(X8) = A1xy1 +

3A2 −A1

2
y.

H1(sl(3,C),O(U1y)) = C2



Differential invariants of curves in CP 2

Keep the chart U1 ' C2(x, y), but choose x as “dependent variable”. This gives
coordinate chart U1x ' C3(x, y, x1) of J1(CP 2, 1). The basis of sl(3,C):

X1 = ∂x, X2 = ∂y, X3 = y∂x + ∂x1
, X4 = x∂y − x22∂x1

, X5 = x∂x − y∂y + 2x1∂x1
,

X6 = x∂x + y∂y, X7 = x2∂x + xy∂y + (x− yx1)x1∂x1
, X8 = xy∂x + y2∂y + (x− yx1)∂x1

.

The general element [λ] ∈ H1(sl(3,C),O(U1x)) is given by

λ(X1) = 0, λ(X2) = 0, λ(X3) = 0, λ(X4) = B1x1, λ(X5) = −B1,

λ(X6) = B2, λ(X7) = B1yx1 +
3B2 −B1

2
x, λ(X8) =

3B2 +B1

2
y.

H1(sl(3,C),O(U1x)) = C2

Compatibility δ1,0λ = −d0,1g:

A1 = B1 ∈ Z, A2 = B2 ∈ C, gxy = yA1
1 .



Differential invariants of curves in CP 2

To cover CP 2, we need two additional charts:

U2 = {[u : v : w] ∈ CP 2 | v 6= 0}, U3 = {[u : v : w] ∈ CP 2 | u 6= 0}.

Doing the same computations for these charts, requiring analyticity, for example on
U1y ∩ U2y ⊂ J1(CP 2, 1), gives the additional constraint (A1 + 3A2)/2 ∈ Z.

Let ω denote the contact form on J1(CP 1, 1), and OCP 2(−1) denote the tautological
line bundle over CP 2.

Theorem

Picsl(3,C)(1)(J
1(CP 2, 1)) =

{
〈ω〉⊗k1 ⊗ π∗1,0OCP 2(k0) | k0, k1 ∈ Z

}
' Z2.

Relation between parameters: A1 = −k1 + 2
3k0, A2 = k1.



Differential invariants of curves in CP 2

Relative invariants on J7(CP 2, 1):

R2 = y2,

R5 = 9y2
2y5 − 45y2y3y4 + 40y3

3 ,

R7 = 18y4
2(9y

2
2y5 − 45y2y3y4 + 40y3

3)y7 − 189y4
2y

2
5(4y

2
3

+ 15y2y4)− 189y6
2y

2
6 + 126y4

2(9y2y3y5 + 15y2y
2
4 − 25y2

3y4)y6

+ 210y2
2y3(63y

2
2y

2
4 − 60y2y

2
3y4 + 32y4

3)y5 − 4725y4
2y

4
4

− 7875y3
2y

2
3y

3
4 + 31500y2

2y
4
3y

2
4 − 33600y2y

6
3y4 + 11200y8

3 .

I Only (k0, k1) ∈ (3Z)× Z
are realized by rational relative invariants.

I The weights
of R2, R5, R7 depend only on J1(CP 2, 1).



Polynomial invariant divisors on jet spaces
We call a divisor on Jk(E,m) polynomial if its restriction to fibers of Jk(E,m)→ J1(E,m) is
polynomial. This notion is independent of the choice of coordinates on E.

Theorem

Let g be a Lie algebra of point vector fields on J0(E,m) and D a g(k)-invariant polynomial
divisor on Jk(E,m). Then [D] = π∗

k,1L for some g(1)-equivariant line bundle L→ J1(E,m).

Proof.
Let D = {fα} be a polynomial divisor on Jk(E,m) defined on the open cover {π−1

k,1(Uα)}.
The transition functions gαβ = fα/fβ ∈ O×(π−1

k,1(Uα ∩ Uβ)) are independent of jet variables of
order ≥ 2.

(y∂x)(4) = y∂x − y21∂y1 − 3y1y2︸ ︷︷ ︸
w. deg. 2

∂y2 − (4y1y3 + 3y22)︸ ︷︷ ︸
w. deg. 4

∂y3 − (5y1y4 + 10y2y3)︸ ︷︷ ︸
w. deg. 5

∂y4

If fα has weighted degree d, then X(k)(fα) has weighted degree ≤ d+ 1 for any X ∈ g. Since
X(k)(fα) = λα(X)fα, it follows that λα(X) has weighted degree ≤ 1, and is therefore a
function on J1(E,m).



Thank you for your attention!


