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Splitting

Equations

Korteweg-de Vries equation:
U = 2Uly + Usxx.
Korteweg-de Vries- Burgers equation:
Ut = Uy + 2Ulx + Uscx-
Generalised Korteweg-de Vries- Burgers equation (nonhomogeneous

media):
uy = g(X)UxX + 2uuy, + f(X)uXXX_

Here g(x) and f(x) are viscosity/dissipation and dispersion
coefficients respectively.
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Splitting

KdV, u; = Uy + 2uuy + Uy

KdV possess

e Compact travelling wave solutions (solitons)
u(x, t) = 6a®sech?®(4a%t + a(x + s));

@ infinitely many conservation laws.
The first four conserved quantities for KdV are

+oo
h(u)) = / u(x, t) dx — mass,

+oo
h(u) = / u?(x, t) dx — momentum,
ol
h(u) = / (203 (x, t) — 3(ux(x, t))?) dx — energy,

h(v) = /m (5u* — 30u(ux)? + 9(uxx)?) dx,
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Splitting

If u(x,t)is a KdV solution then aatlk( ) =0, that is

u(x,0) = f(x) = I(u) = I(f), and Ix(f) is constant in time.
In particular, for solitons Ix(6a% sech?(a(x + s) + 4a%t)) = Ik(a),

+o00
h(a) = / 6a° sech?(ax) dx = 12a, (1)
ol
h(a) = / (622 sech?(ax))? dx — 484%,
1728
h(a) = ?35,
207
h(a) = ﬂja
7
I,(a) = K,a2l_1.
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Splitting

There is a simple recurrent procedure to generate ly(u) — lxy1(v)
using the bi-hamiltonian structure of KdV.

For the KdV of the form u; = Uy + 2uuy the hamiltonian

operators are D and (D3 + uD + uy), where D is a total derivative
with respect to x.
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Splitting

We assume that the initial data u(x,0) = f(x) is bounded and has
a compact support.
Then the asymptotic form (at t — o) of the N-soliton solution is

N
Z 6a? sech?(ajx + p; + 4at) + R(x, t),
i=1
where R(x, t) is a tail, and phase shifts are given by the formula

1 i N ai—ai\°
o=y | 5o 11 (257)

Here {—a?} is the the discrete specter of the differential operator
—%22 + f(x) and ~; are the norming constants from the inverse
scattering procedure. For an arbitrary f(x) this data is hard to get,
so estimations based solely on conserved quantities. may be useful.
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Initial data producing 4 and 5-soliton splitting

[}
L

Figure: The upper red line splits into 4 solitons and the lower one into 5



Splitting of g(x) = 3(tanh(3(x + 4)) — tanh(3(x — 4)))
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Splitting

Splitting of f(x) = 0.4(tanh(x + 15) — tanh(x — 15)), movie
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Splitting

Reflectionless splitting

Since after some deliberation g(x) splits (at least numerically) into
a disconnected sum of N different-speed solitons S,, we get

+00 N 400 N
h(q) = / q(x) dx:zl_zl/ Sidx=12) . ai

—0o0

+o0 N
12(q) =/ GP(x)dx=48) = af

—0o0

+o0
bo) = [ 00 - 3a)) ax= B Y

+oo
W(q) = / (5q* — 30q(qx)? + 942 dx

207 N
_ 20736 7 ©

7 =1
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Splitting

Thus we obtain the system on a;, i=1... N :

N
2j+1 .
Ky a? ™ =1(q),j=1...N,
i=1

where K; is the constant specific to the j-th conserved quantity and
ap >a»>...ay > 0is assumed.

The above equations hold for all j = 1...00, but to find N solitons
it suffice to consider only first N equations.
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Splitting

General case

N +o0

h(q)) = 1223,’—1—/_ R(x, t) dx
+oo

h(q) = 4823 +/ R?(x, t) dx

hlq) = 17282 / (2R3(x, £) — 3(R(x, 1))?) dx

It follows that the discrepancies /;(R(x, t)) = Ii(q) — K; o~ , a2t
are also constant.
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Splitting

Signs of disrepancies

The first four of [;(R) are alternating in sign.

Indeed, at least the initial perturbation mass is carried away by
solitons, so /1(R) < 0.

Since momentum of any part of solution is non-negative, it follows
that L(R) > 0.

The reflected tail is oscillating around zero value, therefore

+00 +oo
/ (2R*(x,t)) dx is small while/ (=3(Ru(x, t))?) dx

—00 —0o0

is negative and comparatively large; so 3(R) < 0.
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Splitting

Signs of disrepancies

Similarly plausible argument can be applied to I4(R) if the
conservation law is rewritten to equivalent quadratic form
5u* — 30uu? +9u2, ~

5—+/5
6

5u + 150° Uy + 9u)2(X = 9(u2 + UXX)(U2 +

Uxx);

5+5
6

Hypothesis The whole series of conserved quantities for a
radiation tail is alternating in signs.
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Splitting

Admissible domain

Necessary conditions

h(g) < 12) . a
N
h(q) > 48) 4

Bo) < TS 2
wg) > FLOY
a; = 0
The system (3) defines the admissible domain in {a1,az,...,an},

the solitons’parameters space.
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Number of solitons after splitting

In order for this domain not to be empty a number of inequalities
must hold, for instance for n = 2, we have
ai+ay>p1, @+ a3 < ps (here pr = K 10i(q), j = 2k — 1),

Oﬂ 02 04 06 08 1 12 OO 02 04 06 08 1 12
a a

[—ra+a=t—a+d=05--a=a] [—ra+a=1—a+d=02--rq=a]

The admissible domain would be nonempty if OA > OB as on the
graph (above left), where p; = 1 ,p2 = 0.5. For both pomts A and

B ai = a», so OA=4/2 pl \[andOB—\/ 22 \[



On the right graph p1 =1, p» = 0.2 and admissible domain is
empty. We must increase the number of solitons to n. Then

31232:...an:lforAandai’:ag: =a = 0n2 If

reqU|reOA2—n( 5) > OB2—n(3¥) =n>5=n=3.
For arbitrary p1, p> the smallest number of solitons is the integer n
such that

n>4 —. 3
P2 ()

For other conserved quantities similar conditions of non-emptiness

k
of the admissible domain lead to compare n*~1 v 2L However
usually (eg, for all examples below) it suffice to use (3) to predict

the right number of resulting solitons.

Remark: The intersection points correspond to reflectionless
splitting; their coordinates may be used as a estimations of the
solitons’ train parameters.



In the case of the second video
li(q) =24, h(q) = 18.56, l3(q) = 27.904, l4(q) = 55.637.

p1 = 24/6, p(q) = 18.56/48, . ...

The number of solitons
3 3
Pi 2
>3 — = ~45=n=>5
"7\~ Vozser g

Note that the system for 4 solitons S°7_; a?jil

solutions.

,j=1,...,4hasno



Non-homogeneous media

Non-homogeneous media. Model

Consider equation

ue(x, t) = 2uuy + F'(X)Usx + F(X) oo = (U2 + F(X) ) - (4)

Since the equation has a form v = F(u), the mass f_t:}o udx is
conserved.

400
But the momentum (u?) = / u? dx does not:

3(u?)e = (ue) = (u(u? + F(x)u)x) = (207 ue) + (u(f(x)th)x)
0T 4 ()t T3 = (e f (X)) = =5 FOOUR| T2+ (F(x)u2),

(U?)e = 2(F'(x)uf).
(3)
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The choice of f(x)

We consider examples where f(x) > 0 is numerically constant
outside a finite neighborhood of origin.

If f(£00) = 74, the equation at x — +00 comes to
U = 20l + Y Uxoox
These are KdVs, whose solitons are given by
6y.a”sech?(a(x + s) + 4yLa’t);
and they move to the left.

If start with a KdV_ soliton to the right of the above
neighborhood, it crosses the transient region and becomes

KdV_ soliton or splits into a number of them.

The number of solitons and their parameters may be evaluated
using the monotonicity of the momentum evolution (5).



Conservation laws restrictions, single soliton

Suppose the problem

{ur = (u2 + f(X)uxx)x, f(+00) =0, f(—00) =11}

has a solution u(x, t), such that

u(x,0) = 6a3y0 sech?(ag((x + s) + 4a3t))|t=0

and at t > 0, u(x, t) it coincides with a single soliton, possibly plus
reflected wave.

Let this soliton has the amplitude 6a2+;.

If it is plausible to ignore a reflected wave then

12a;3v1 = 12a070 —mass conservation;
48a3+? > 483373 —impulse evolution if f/ > 0; (6)
48a3+? < 483373 —impulse evolution if £/ < 0.

2
. .- . a

Then 2 = 22 and refraction coefficient R = 4 = 421
Vo agvo

— 2
ao " gé!



Conservation laws restrictions, 3

Suppose the problem

{ur = (u2 + f(X)uxx)x, f(+00) =0, f(—00) =11}

has a solution u(x, t), such that

u(x,0) = 6a3y0 sech?(ag((x + s) + 4a3t))|t=0

and at t > 0, u(x, t) it coincides with a bi-soliton, possibly plus
reflected wave.

Let bi-soliton consist of peaks with amplitude 627y, and 6a371.
If it is plausible to ignore a reflected wave then

12a1v1 + 12a2v1 = 123970 —mass conservation;
482342 + 482377 > 48a3y2 —impulse evolution if ' > 0; (7)
<0

48237 + 482377 < 48a3y3 —impulse evolution if £/



Conservation laws restrictions, 4

Denote
a1 a7 M
—= z=-"" k=

070’ 070’ "'
the (7) may be rewritten to the form

y+z=1 —mass conservation;
y3 4+ 2% > k —impulse evolution if k < 1; (8)
y®+ 23 < k —impulse evolution if k > 1.

The solution of the system {y+z=1,y3+22=k}is
{% + %\/12/( -3, % F ?\/12/( 3}. Slnce obviously 0 < y, z
it make sense only for 7 < k < 1, see the next figure.

In this case for the ﬁrst (greater) peak it follows that

11
1>y=220 o — 24 " VI2k—3.
dao7o 2 6



Conservation laws restrictions, 5

- 43171

4337
the restriction on the first peak refraction coefficient (|t also
coincides with the amplitudes ratio)

2k +1++12k -3

Since the refraction coefficient R = Vo equals we obtain

R >

6k

yHz=l— -k=01——k=025—-&=035
i B k=12




Example 1

The decreasing (with respect to the direction of the soliton motion)
dispersion coefficient f(x) = & (13 + 11tanh(3%5)) in

Uy = (u)z( + f(x)uXX)X. Thus uy = 2uuy + Usy at x = +00 and

us = 2uuy + 11—2uXXX at x = —oo.

-40 -20 0 20 40 60
x

Nonhomogeneous distribution f(x) = 3 (13 + 11tanh(2)) and
the initial soliton 6 sech?(4t + x — 50).



Soliton in the case of f(x) = i (13 + 11 tanh(%))

No reflected wave can be seen. The stable height of the first peak
is 18.5 high. The height of the second one is.about 0.37 .



choice2.avi
Media File (video/avi)


Example 2. Transmitted solitary wave

Increasing (with respect to the soliton motion) dispersion coefficient
¢(x) = 3 (14 Larctan(x)) in vy = (u2+ @(x)tx) - Thus

Up = 2Uly + Uxyx at x = +00 and uy = 2uuy + %UXXX at x = —o0.

2.5
2

159

1_
03

-30 =20 -10 \{' /" 10 20 30
.\' x
—0_5\'(




¢(x) = % (1 + = arctan(x))
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Decay velocity

Let E(u) = 0 be a system of equations describing an ideal media
state (i.e., without dissipation).

A scalar H depending on u and its derivatives is a conservation law
if an integral of H over some fixed spatial domain, denoted by (H),

is independent of time: % =0.
E
- (H) .
Here the restriction to E means that =5~ = 0 on any solution u(x)

of E=0.

With dissipation taken into account, the quantity H is constant no
more and % = 0 is called the decay velocity of H

A dissipative media state usually satisfies the equation

E(u) + nF(u) = 0, where 7 is some small parameter; for n = 0 we
get the ideal state equation.

The decay velocity depends on the additional summand 7 F(u).



Conservation laws and generating functions

A conservation law for the equation E is a differential n— form
n ~
w = Y widx; , such that dw =0 on £ ; here
i=0
dx; =dxg A+ Adxj_1 Adxjp1 A Adx, and w;'s are some
functions on J*° (7).

In established terminology wyq is called a conserved density, while
(—wi,w2,...,(—1)"wy) is called a flux.)

The method for finding of conservation laws is as follows. Let /¢ be
a formal conjugate of (g, the linearizaton of E.

Solutions of the equation

le()|e= =0 (9)

are called generating functions of conservation laws.



Generating functions

They are connected to conservation laws themselves in a following
way. By the definition of a conservation law, the equation
dwl|ge = 0 holds, which is equivalent to

dw = O(E)dxg A - - - A dxp,
where O(E) € J. O(E) = }_, , O;Ds(E;).

Now O*(1) is the generating function of this conservation law or a
solution of (9) (* stands for formal conjugation).

When the generating function is found, it remains however to find
the conservation law itself and to check whether it is trivial (trivial
by definition are are conservation laws w which are exact, i.e.,

w = dw for some (n — 1)- differential form w).



Main theorem

Theorem

Let an equation E(n) depends on a small parameter n in such a
n ~
way that Eq = E(0) is a non—dissipative system. Let w = > wjdx;

0
be the conservation law of Eq. Then the decay velocity of the
conserved quantity (wo) in presence of dissipation is given by

S| =m0

) up to O(n°)
E(n) an n=0




Proof
For any domain V C R"*! we have

/w:/dw:O on &7, (10)
ov 14

by the definition of a conservation law. If xp =t and V is a

cylinder over spatial domain S, V =S X [ty, t1],

then Q = [wodxy A -+ A dx, is a function of variable ¢ and the
S

former integral equals Q(t) — Q(ty) plus the flow of a vector
(—wi,...,(—1)"wy,) through the 9S x [to, t1].

In the case this flow is trivial (such is a case when S = R” and wjlg
are functions rapidly decreasing at infinity), the function Q(t) is
constant, i.e. Q(t) is a conserved quantity:

d d d
CH_Q(t)—(ﬂ_/wodxl/\~-/\dx,, —$<wo>—0 (11)

S &



On the other hand

d d d
dt/wodxl/\---/\dxn—dt/w—dt/dw—

S ov v

d
o (ZOUDU(E0)>th dxq A Adxy =

v

t
jt//o*(l)Eodt/\dX1/\"-/\dX,,ZO (12)
to S

Differentiation of the last integral by the upper limit t imply

d
dt/dexl/\'-‘/\an:/O*(l)Eo dxy A -+ Adxp (13)
S S



The right-hand side of (13)) is zero on Eq = 0, but when
restricting (13) to E(n) = Eo + 71 - F = 0 we get

/wodxl A Ndxy = /(9* —nF)dxy A~ Ndx,, (14)

or

=-—n(0*(1) - F) (15)
E(n)

In a more general case of E() = Eq + 17 - + O(n?), it follows
from (13) that

Sl




If there is more than one small parameter, the formula (16) is
readily generalized:

> . OE
- _;<77r0 (1) ) .

) up to O(n?)
n=0

|
=
|
—
—
N
~
A\

Remark

It is noteworthy that in case of a system it is possible for any
given conserved quantity to add dissipative—like summands in such
a way that this quantity still remains conserved: for any O*(1) one
can choose such an F that right—hand side of (15) will be zero.

N




Remark

In case of evolution equation 3% = Eg(u) + nF(u) there is another
explicit form of the decay velocity.

If wg be an ideal conserved density, d‘*"’ =/{.,,(Eo) =0 onEq and
% = Lywo (Eo + nlwy (F) in presence of dissipation.

Therefore dleo)
wo) _
0 n(luo(F)

is the decay velocity law for evolution equation.




Example from magnetohydrodynamics

The 3-dimensional MHD-equation, describing incompressible
magnetofluids in dimensionless variables may be taken in the
following form:

W {v.Vv=-Vp'+B-VB+rV
% {v.VB=B-Vv+,V?B (18)
V.v=0-=V.B

Here v and 7 are reciprocal of mechanical and magnetic Reynolds
numbers respectively;
v and B are velocity and magnetic fields

*

p* is the total pressure.

It is assumed that mass density is constant and uniform, and that v
and B are in Alfven speed units.



Equation (18) may be simplified in case of two spatial variables
(x, y) assuming 2 = 0. In this case
B = (B«,By,,0), v= (v, v,0).

Moreover v =V X 1e, and B = V X a for some stream function
¥(x,y, t) and potential a = a(x, y, t)e;.

Introduce dimensionless vorticity and current by V x v = we;,
VB = je, where j = —V?a and w = —V?.

Then the last equation in the system (18) is automatically true,
while the rest comes to

(19)

Aus + uxAuy — uyAuy + vy Avy — viAv, = vA%y
Ve + Uxvy — Uy vy = nAv



Conservation laws of the ideal state

We restrict ourselves to low order conservation laws, that is to such

af= (f.) in (9) that S and T are functions on J°(R3,R?) and
J2(R3,R?) respectively.

This choice may be understood by considering the structure of (¢
matrix: its second column is a first order operator while the first
column is of third order.

Then the kernel of £, |¢s- is linearly generated by
(h(ot)) ’ <X2 gﬁ) 7 <P(5)X> ’ <q((t))y> ’
(&) (rtiar) (otn) @

where h, p, g, f and ® are arbitrary functions.



Conserved quantities

There are only three non—trivial conserved densities:
the total energy E (magnetic plus kinetic energy),
generalized 'cross helicity” He,

mean magnetic potential A,

1
E:f<u>2<—|—u§—|—v3+vy2>

2
He = (F(v) - (v + uywy) (21)
A= (&)

Their generating functions are placed on the second line of (20) in
respective order. Reall that f and ® are arbitrary functions of v.



Once dissipation coefficients v or 1) are have small but finite values,
quantities (20) are conserved no more. Their decay rates are

dE

/[I/ (Au)? +n(Av)?] dxdy ;
dH. 1
” /[Vf( )A2u + nf'(v)Aulv] dxdy =

S

1 1

_ 5(y +n)/f’(v)AuAv dxdy — 2y/ f'(vV)Au(v2 + v, )dxdy
S S
dA / "
P &' (V)Avdxdy =7 [ &"(v)(v2 + v )dxdy
S S

(22)



One can see that the decay of E is monotonic but those of H. and
A are not necessarily so.

Such an inequality in decay rates leads to a distinct physical
phenomenon of 'self-organization’ or quasi—stable states of plasma.

Depending on initial conditions competing processes called
"selective decay’ and 'dynamic alignment’ occur: in selective decay
energy decays relatively to mean potential, and in dynamic
alignment energy decays relatively to cross helicity (velocity and
magnetic field being aligned.

There are also some more delicate possibilities of self~organization.



Taylor trick

There exist a simple procedure for finding solutions of the described
behavior. It was suggested in

J.B. Taylor. Relaxation of toroidal plasma and generation of reverse
magnetic fields. Phys. Rev.Lett. 33,1974 1139-1141,

and is known as 'Taylor trick’.

Let us minimize E with H. and A as constrains. Put
O(E + AHc + nA) =0, A and H. presumed constant, A and
being Lagrange multipliers.

The Euler-Lagrange equations are
Alu—F(v)]=0
Av = f(v)Au+g(v),
where F/ = f and g = £¢'.

(23)



Taylor trick, continued

The system (23) generally is not compatible with (19).

But it is compatible if = v which is in particular true in the ideal
case 7 = v = 0. In this case, combining (19) and (23) we get

Alu—F(v)]=0
Av=TH(E+ )+ a
Ve = Uy Vi — UxVy

(uxy — fVXy)(VS - Vy2) + [(uyy — fryy) — (Uxx — fvx)]vxvy =0
(24)

Solutions of (24) describe the quasistationary states with
remarkable accuracy as it was demonstrated numerically for special
types of f and @ in

A.C. Ting, M.H. Matthaeus, D. Montgomery. Turbulent relaxation
processes in magnetohydrodynamics Phys. Fluids, 29, 1986,



Remark

The first and the last equations of (24) form the closed system

Aw =20
Ze + wxzy — wyz, =0,

where w = u — F(v) and z = v2 + v2.

The second equation in (24) may be written in a closed form
AR = V(R) where R = R(v), R' = V1 — f2




Remark

The case of u = F(v) in (24) is a generalization of dynamic
alignment (aligned are gradients of u and v). It implies stationary
solutions

u=F(v)
vi =0
AR =V(R),

where R'(v) = \/1 — f2(v) as in previous remark.




Inference

Thank you

for your attention
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