Variational, Symplectic and Hamiltonian Operators

May 10, 2023

TI. 1. 1.			201	E II. I	\/
I his is a	a summarv	of the	paper with	Emrullah	Yasar:

Variational Operators, Symplectic Operators, and the Cohomology of Scalar Evolution Equations

- Variational Operators and Symplectic Operators and the Variational Bicomplex
- 2 Coverings and reduction for Hamiltonian Evolution equations.

The Multiplier Problem in Calculus of Variations

Given a differential equation/system

$$\Delta(\mathbf{x}, u, \partial u) = 0$$

does there exists a function $A(\mathbf{x}, u, \partial u)$ and a Lagrangian $L(\mathbf{x}, u, \partial u)$ such that

$$A \Delta = \mathbf{E}(L)$$

here **E** is the Euler-Lagrange operator, and the function $A(\mathbf{x}, u, \partial u)$ is called the variational multiplier

Long history, going back to Helmholtz, and maybe even longer....

Example

For a 4th order ODE

$$\frac{d^4u}{dx^4} = F(x, u, u_x, u_{xx}, u_{xxx})$$

admits a variational multiplier if and only if

$$0 = \frac{\partial^{3} F}{\partial u_{xxx}^{3}}$$

$$0 = \frac{\partial F}{\partial u_{x}} + \frac{1}{2} \frac{d^{2}}{dx^{2}} \frac{\partial f}{\partial u_{xxx}} - \frac{d}{dx} \frac{\partial f}{\partial u_{xx}} - \frac{3}{4} \frac{\partial f}{\partial u_{xxx}} \frac{d}{dx} \frac{\partial f}{\partial u_{xxx}}$$

$$+ \frac{1}{2} \frac{\partial f}{\partial u_{xx}} \frac{\partial f}{\partial u_{xxx}} + \frac{1}{8} \left(\frac{\partial f}{\partial u_{xxx}} \right)^{3}$$

This is about the best we can hope for.

Shown using the cohomology of the variational bicomplex.

The bicomplex approach also produces the multiplier A and Lagrangian L in a geometric way.

Variational Operator

The multiplier problem can be generalized: Given a differential equation

$$\Delta(\mathbf{x}, u, \partial u) = 0$$

 $\mathcal{E}(\Delta) = \mathbf{E}(L)$.

does exists a differential operator ${\cal E}$ and a Lagrangian $L({\bf x},u,\partial u)$ such that

If
$$\mathcal E$$
 is a function, then this is the variational multiplier problem as before. In general call $\mathcal E$ a variational operator.

The focus here will be scalar evolution equations $\Delta = u_t - K(t, x, u, u_x, \dots, u_n)$. This is related to the Symplectic/Hamiltonian formulation of evolution equations.

Examples:

$$D_{\mathrm{x}}(u_t-u_{\mathrm{xxx}})=u_{\mathrm{tx}}-u_{\mathrm{xxxx}}=\mathbf{E}\left(-rac{1}{2}(u_tu_{\mathrm{x}}+u_{\mathrm{xx}}^2)
ight)$$

$$tD_{x}\left(u_{t}-u_{xxx}-\frac{1}{2}u_{x}^{2}+\frac{u}{2t}\right)=\mathbf{E}\left(-\frac{1}{2}tu_{x}u_{t}+\frac{1}{2}tu_{x}u_{xxx}+\frac{1}{6}tu_{x}^{3}\right) \quad \text{PCKdV}.$$

Low Order Case : $u_t = K(t, x, u, u_x, u_{xx}, u_{xxx})$

We find using the bicomplex

Theorem

 $u_t = K(t, x, u, u_x, u_{xx}, u_{xxx})$ admits a first order variational operator

$$\mathcal{E} = R(t, x, u, u_x, \ldots) D_x + \frac{1}{2} D_x R$$

if and only if the following is a trivial conservation law,

$$\kappa = \hat{K}_2 dx + \left(-K_0 + K_1 \hat{K}_2 - \frac{1}{2} (X(K_3) \hat{K}_2^2 + K_3 \hat{K}_2^3) + X(K_3) X(\hat{K}_2) + K_3 X^2 (\hat{K}_2) \right) dt$$

where $K_{,i}=\partial_i K$, $\hat{K}_2=\frac{2}{3K_3}(K_{,2}-X(K_{,3}))$, and X is the total x derivative

$$X = \partial_x + u_x \partial_u + u_{xx} \partial_{u_x} + \dots,$$

Furthermore, when $\kappa = d_H(\log R)$ then $u_t = K$ admits the first order variational operator $\mathcal{E} = RD_x + \frac{1}{2}D_xR$.

Examples:

PCKdV: $u_t = u_{xxx} + \frac{1}{2}u_x^2 - \frac{u}{2t}$

$$\kappa = \frac{1}{t}dt = d_H \log t, \qquad \mathcal{E} = tD_x$$

KN/SCH-KdV:
$$u_t = u_{xxx} - \frac{3}{2} \frac{u_{xx}^2}{u_x}$$

$$\kappa = -2\frac{u_{xx}}{u_{x}}dx + \frac{6u_{x}u_{xx}u_{xxx} - 2u_{xxxx}u_{x}^{2} - 3u_{xx}^{2}}{u_{x}^{3}}dx = d_{H}(\log u_{x}^{-2})$$

$$\kappa = -2\frac{u_{xx}}{u_{x}}dx + \frac{3u_{x}u_{xx}}{u_{xx}}$$

$$\mathcal{E} = \frac{1}{u^{2}}D_{x} - \frac{u_{xx}}{u^{3}}$$

$$\mathsf{KdV}: u_t = u_{\mathsf{xxx}} + uu_{\mathsf{x}}$$

$$\kappa = -2u_{\mathsf{x}}\mathsf{d}t$$

and $\boldsymbol{\kappa}$ is not a conservation law. No first order operator.

Part 1:

The Variational Bicomplex.

The Unconstrained Jet Space

Reference: Anderson, Kamran, The Variational Bicomplex for Hyperbolic Second-order Scalar Partial Differential Equations in the Plane.

On
$$J^{\infty}(\mathbb{R}^2, \mathbb{R}) = (t, x, u, u_t, u_x, u_{tt}, u_{tx}, u_{xx}, \ldots)$$
 the t and x total vector fields are

$$D_{t} = \partial_{t} + u_{t}\partial_{u} + u_{tt}\partial_{u_{t}} + u_{tx}\partial_{u_{x}} \dots,$$

$$D_{x} = \partial_{x} + u_{x}\partial_{u} + u_{tx}\partial_{u_{t}} + u_{xx}\partial_{u_{x}} \dots$$

With
$$u_i = D_x^i(u) = u_{xxxx...}, u_{t,i} = D_x^i(u_t)$$
, the contact forms are

$$\begin{split} \vartheta^0 &= du - u_t dt - u_x dx, \\ \vartheta^i &= D_x^i (\vartheta^0) = du_i - u_{t,i} dt - u_{i+1} dx^{i+1}, \quad i \geq 1, \\ \vartheta^{a,i} &= (D_t)^a D_x^i (\vartheta^0), \quad a \geq 1, i \geq 0. \end{split}$$

 $D_x^i(\vartheta^0)$ is the repeated Lie derivative.

The Unconstrained Bicomplex

The contact forms together with dt, dx give a coframe for $J^{\infty}(\mathbb{R}^2, \mathbb{R})$.

This gives rise to a bi-grading of forms

$$\Omega^{r,s}(J^{\infty}(\mathbb{R}^2,\mathbb{R}))\subset\Omega^{r+s}(J^{\infty}(\mathbb{R}^2,\mathbb{R}))$$

r = 0, 1, 2 - the degree of dt, dx or horizontal forms

$$s \geq 0$$
 - the degree of contact forms or vertical forms.

Example:
$$\omega \in \Omega^{1,2}(J^{\infty}(\mathbb{R}^2,\mathbb{R}))$$
,
$$\omega = (tu_x + x^2u)dt \wedge \vartheta^{1,1} \wedge \vartheta^2 + u_{tx}\sin(xt)dx \wedge \vartheta^{2,3} \wedge \vartheta^3$$

$$\vartheta^{1,1} = D_t D_x(\theta^0) = du_{tx} - u_{ttx}dt - u_{txx}dx,$$

$$\vartheta^2 = D_x^2(\theta^0) = du_{xx} - u_{txx}dt - u_{xxx}dx, \dots$$

The Unconstrained Differentials d_H and d_V

The horizontal differential is an anti-derivation,

$$d_H:\Omega^{r,s}(J^\infty(\mathbb{R}^2,\mathbb{R})) o\Omega^{r+1,s}(J^\infty(\mathbb{R}^2,\mathbb{R})),$$

computed using the Lie derivative $D_t(\omega)$ and $D_x(\omega)$, $\omega \in \Omega^{r,s}(J^\infty(\mathbb{R}^2,\mathbb{R}))$ by,

$$d_H\omega = dt \wedge D_t(\omega) + dx \wedge D_x(\omega).$$

The vertical differential is an anti-derivation

$$d_V:\Omega^{r,s}(J^\infty(\mathbb{R}^2,\mathbb{R})) o\Omega^{r,s+1}(J^\infty(\mathbb{R}^2,\mathbb{R}))$$

which satisfies,

$$d_{V}f(t,x,u,u_{t},u_{x},...) = \frac{\partial f}{\partial u}\vartheta^{0} + \frac{\partial f}{\partial u_{t}}D_{t}(\vartheta^{0}) + \frac{\partial f}{\partial u_{x}}D_{x}(\vartheta^{0}) + ...,$$

$$d_{V}\vartheta^{a,i} = 0, \qquad d_{V}dt = 0, \quad d_{V}dx = 0.$$

The important properties of d_H , d_V are

$$d_H^2 = 0,$$
 $d_V^2 = 0,$ $d_H d_V + d_V d_H = 0$

The Unconstrained Variational Bicomplex.

The rows and columns of the unconstrained variational bicomplex are exact.

The Equation Manifold

Start with the function Δ whose zero set defines a scalar evolution equation,

$$\Delta = u_t - K(t, x, u, u_x, \dots, u_n), \qquad K \in C^{\infty}(J^{\infty}(\mathbb{R}^2, \mathbb{R})).$$

Let $\mathcal{R}^{\infty}=(t,x,u,u_x,u_{xx},\ldots)$ and $\iota:\mathcal{R}^{\infty}\to J^{\infty}(\mathbb{R}^2,\mathbb{R}),$ $\iota=(t,x,u,u_x=u_x,u_t=K,u_{tt}=T(K),u_{tx}=X(K),u_{xx}=u_{xx},\ldots).$

the inclusion of the infinite prolongation of
$$\Delta = 0$$
 where T and X are

the inclusion of the infinite prolongation of $\Delta = 0$ where T and X are

$$X = \partial_{\mathsf{x}} + u_{\mathsf{x}}\partial_{\mathsf{u}} + u_{\mathsf{xx}}\partial_{\mathsf{u}_{\mathsf{x}}} + \dots$$

and T, X are the restriction of D_t and D_x to \mathcal{R}^{∞} ,

The Pfaffian system \mathcal{I} on \mathcal{R}^{∞} is the pullback of the contact system on $J^{\infty}(\mathbb{R}^2,\mathbb{R})$,

$$\theta^{0} = \iota^{*}(du - u_{t}dt - u_{x}dx) = du - Kdt - u_{x}dx, \tag{1.2}$$

 $\theta^{i} = \iota^{*} \vartheta^{i} = du_{i} - X^{i}(K)dt - u_{i+1}dx$

 $T = \partial_t + K \partial_u + X(K) \partial_{u_n} + X^2(K) \partial_{u_m} + \dots$

(1.1)

generate ${\mathcal I}.$

generate \mathcal{I} . Solutions to $\Delta=0$ are integral manifolds of $\mathcal{I}=\{\theta^i\}_{i>0}$.

The Constrained Variational Bicomplex

The bicomplex $\Omega^{r,s}(\mathcal{R}^{\infty}) = \iota^*\Omega^{r,s}(J^{\infty}(\mathbb{R}^2,\mathbb{R}))$, r = 0, 1, 2 and s = 0, 1, ...If $\omega \in \Omega^{1,2}(\mathcal{R}^{\infty})$ then

$$\omega = dx \wedge (a_{ij}\theta^i \wedge \theta^j) + dt \wedge (b_{ij}\theta^i \wedge \theta^j)$$

where $a_{ij}(t,x,u,u_x,u_{xx},\ldots), b_{ij}(t,x,u,u_x,u_{xx},\ldots) \in C^{\infty}(\mathcal{R}^{\infty}).$

The induced anti-derivation $d_H:\Omega^{r,s}(\mathcal{R}^\infty) o \Omega^{r+1,s}(\mathcal{R}^\infty)$ is

$$d_H\omega = dt \wedge T(\omega) + dx \wedge X(\omega), \quad T = D_t|_{\mathcal{R}^{\infty}}, X = D_x|_{\mathcal{R}^{\infty}}$$

The induced vertical differential $d_V: \Omega^{r,s}(\mathcal{R}^{\infty}) \to \Omega^{r,s+1}(\mathcal{R}^{\infty})$ is $d_V = d - d_H$. The operations d_H and d_V satisfy as in the unconstrained case,

$$d_H^2 = 0$$
 $d_V^2 = 0$, $d_H d_V = -d_V d_H$. (1.3)

Except: The horizontal d_H complex may not be exact (vertical d_V is), and

$$H^{r,s}(\mathcal{R}^{\infty}) = rac{\operatorname{Ker}\left\{d_{H}: \Omega^{r,s}(\mathcal{R}^{\infty})
ightarrow \Omega^{r+1,s}(\mathcal{R}^{\infty})
ight\}}{\operatorname{Im}\left\{d_{H}: \Omega^{r-1,s}(\mathcal{R}^{\infty})
ightarrow \Omega^{r,s}(\mathcal{R}^{\infty})
ight\}}.$$

(1, s)- Conservation Laws

The kernel of $d_H: \Omega^{1,s}(\mathcal{R}^{\infty}) \to \Omega^{2,s}(\mathcal{R}^{\infty})$ are (1,s) conservation laws.

$$\int_{-\infty}^{\infty} Th_{\alpha} f_{\alpha} = 0.00772$$

$$\kappa = \sqrt{u_{\text{xxx}}} dx - \frac{4u_{\text{xxx}} u_{\text{xxxx}} - 5u_{\text{xxxx}}^2}{16u_{\text{xxx}}^3} dt$$

satisfies
$$(T(x)) + \sqrt{4u_{xx}u_{xxxx} - 5u_{xxx}^2}),$$

 $d_H \kappa = \left(T(u_{xxx}) + X\left(\frac{4u_{xxx}u_{xxxxx} - 5u_{xxxx}^2}{16u^3}\right)\right)dt \wedge dx = 0$

is a conservation law and $[\kappa] \in H^{1,0}(\mathcal{R}^{\infty})$. The form $\eta \in \Omega^{1,1}(\mathcal{R}^{\infty})$, $\eta = dx \wedge \theta^{0} \cdot \left(-\frac{2}{3} u_{x} u_{xxx} - \frac{1}{3} u u_{xxxx} \right) - dt \wedge \sum_{a=1}^{3} (-X)^{a-1} \left(\frac{u u_{xxxx} + 2 u_{x} u_{xxx}}{6 u_{x}^{\frac{3}{2}}} \theta^{3-a} \right)$

satisfies $d_H \eta = 0$ so is a (1,1)-conservation law and $[\eta] \in H^{1,1}(\mathcal{R}^{\infty})$.

is a conservation law and
$$[\kappa] \in H^{1,0}(\mathbb{R}^{\infty})$$
. The form η

$$\eta = dx \wedge \theta^{0} \cdot \left(-\frac{2}{3}u_{x}u_{xxx} - \frac{1}{3}uu_{xxx}\right) - dt \wedge \sum_{k=0}^{3} (-X)^{a-1} \left(-\frac{2}{3}u_{xx} - \frac{1}{3}uu_{xxx}\right) - dt \wedge \sum_{k=0}^{3} (-X)^{a-1} \left(-\frac{2}{3}u_{xx} - \frac{1}{3}u_{xx}\right) - dt \wedge \sum_{k=0}^{3} (-X)^{a-1} \left(-\frac$$

Here $[\eta] \neq d_V[\xi], [\xi] \in H^{1,0}(\mathbb{R}^{\infty}).$

Example: $u_t = \sqrt{\frac{1}{u_{xx}}}$, The form $\kappa \in \Omega^{1,0}(\mathbb{R}^{\infty})$

Part 2:

The Cohomology $H^{1,2}(\mathcal{R}^{\infty})$ and Variational Operators.

Reference: Anderson , Kamran, The Variational Bicomplex for Hyperbolic Second-order Scalar Partial Differential Equations in the Plane.

Theorem

For any $[\omega] \in H^{1,s}(\mathcal{R}^{\infty})$, $s \ge 1$ there exists a representative, $\omega = \mathsf{d} \mathsf{x} \wedge \theta^0 \wedge \rho - \mathsf{d} \mathsf{t} \wedge \beta,$

where
$$ho\in\Omega^{0,s-1}(\mathcal{R}^\infty),\;eta\in\Omega^{0,s}(\mathcal{R}^\infty)$$
 and

 $\mathbf{L}_{\Delta}^*(
ho) = -T(
ho) - (-X)^i(\mathcal{K}_i
ho) = 0.$

Normal Form for $H^{1,s}(\mathbb{R}^{\infty})$

If
$$s=1$$
, ρ is a function and $\mathbf{L}^*_{\Delta}(\rho)=0$ is the "equation for the characteristic".

(2.1)

Corollary

- **1** For $s \geq 3$ there are no non-zero solutions to $\mathbf{L}^*_{\Delta}(\rho) = 0$, $\rho \in \Omega^{0,s-1}(\mathcal{R}^{\infty})$, and so $H^{1,s}(\mathcal{R}^{\infty}) = 0$, $s \geq 3$
- so $H^{1,s}(\mathbb{R}^{\infty})=0$, $s\geq 3$.
 - For all [ω] ∈ H^{1,2}(R[∞]) there exists a d_V closed representative.
 For Δ even order there are no non-zero solutions to L^{*}_Δ(ρ) = 0, ρ ∈ Ω^{0,1}(R[∞]), and so H^{1,2}(R[∞]) = 0, s > 2.

A Lagrangian λ is a differential form,

Variational Operators and $H^{1,2}(\mathbb{R}^{\infty})$

$$\lambda = L(t, x, u, \partial u)dt \wedge dx \in \Omega^{2,0}(J^{\infty}(\mathbb{R}^2, \mathbb{R}))$$

The fundamental computation in Calculus of Variations is: $d_V \lambda = d_V (L(t, x, u, \partial u) dt \wedge dx) = dt \wedge dx \wedge \theta^0 \cdot \mathbf{E}(L) + d_H \eta$

$$\mathbf{E}(L)$$
 is the Euler-Lagrange expression for L $\eta \in \Omega^{1,1}(J^{\infty}(\mathbb{R}^2,\mathbb{R}))$ is the boundary term.

If Δ admits a variational operator

Equation 2.2 is then

riational operator
$$\mathcal{E}(\Delta) = r^{i}(t, x, y, y_{c})$$

Restrict 2.3 to $\Delta = 0$ (pullback by $\iota : \mathcal{R}^{\infty} \to J^{\infty}(\mathbb{R}^2, \mathbb{R})$) so $\mathcal{E}(\Delta) = 0$,

 $d_V \iota^* (Ldt \wedge dx) = d_H \iota^* \eta.$

$$\mathcal{E}(\Delta) = r^i(t, x, u, u_x, \ldots) D_x^i(\Delta) = \mathbf{E}(L)$$

$$(t,x,u,u_x,\ldots)D_x'(\Delta)=\mathbf{E}(L)$$

$$(x, u, u_x, \ldots)D_x^r(\Delta) = \mathbf{E}(L)$$

$$d_V(Ldt \wedge dx) = dt \wedge dx \wedge \theta^0 \cdot \mathcal{E}(\Delta) + d_H \eta$$

$$d_H \eta$$

(2.2)

Continuing from

$$d_{V}\iota^{*}(Ldt \wedge dx) = d_{H}\iota^{*}\eta, \qquad \eta \in \Omega^{1,1}((J^{\infty}(\mathbb{R}^{2},\mathbb{R}))$$
 (2.4)

Lemma

The form $\omega = d_V(\iota^*\eta) \in \Omega^{1,2}(\mathcal{R}^{\infty})$ is d_H -closed so that $[d_V\iota^*\eta] \in H^{1,2}(\mathcal{R}^{\infty})$. Futhermore ω is a d_V closed representative.

Proof.

This gives an onto linear mapping $\Phi: \mathcal{V}_{op}(\Delta) \to H^{1,2}(\mathcal{R}^{\infty})$,

$$\Phi(\mathcal{E}) = [d_V \iota^* \eta].$$

Take d_H of $\omega = d_V(\iota^*\eta)$ and use $d_H d_V = -d_V d_H$, and $d_V^2 = 0$ in equation 2.4.

- a) Find for $[\omega]$ a d_V closed representative.
- b) By vertical exactness $\omega = d_V \eta$.
- c) $d_V d_H \eta = -d_H d_V \eta = -d_H \omega = 0$

d) Use vertical exactness $d_H \eta = d_V \lambda$ and lift off \mathcal{R}^∞ (key argument produces \mathcal{E}, λ)

The normal form for $[\omega] \in H^{1,2}(\mathcal{R}^\infty)$ representative given previously-

$$\omega = dx \wedge \theta^0 \wedge \rho - dt \wedge \beta, \tag{2.5}$$

can be modified to a full canonical form leading to the following correspondence.

Theorem

Let $\mathcal{E} = r_i(t, x, u, u_x, \dots) D_x^i$ $i = 0, \dots, k$ be a k^{th} order differential operator and $\Delta = u_t - K(t, x, u, u_x, \dots, u_{2m+1}), m \ge 1$ an odd order evolution equation.

f 1 $\cal E$ is a variational operator for Δ if and only if $\cal E$ is skew-adjoint and

$$\omega = dx \wedge \theta^{0} \wedge \epsilon - dt \wedge \sum_{j=1}^{2m+1} \left(\sum_{a=1}^{j} (-X)^{a-1} \left(\frac{\partial K}{\partial u_{j}} \epsilon \right) \wedge \theta^{j-a} \right)$$
 (2.6)

is d_H closed on \mathbb{R}^{∞} , where $\epsilon = -\frac{1}{2}\iota^*\mathcal{E}(\vartheta^0) = -\frac{1}{2}r_iX^i(\theta^0)$.

2 Let $\mathcal{V}_{op}(\Delta)$ be the vector space of variational operators for Δ . The function $\Phi: \mathcal{V}_{op}(\Delta) \to H^{1,2}(\mathcal{R}^{\infty})$ defined from equation 2.6 by

$$\Phi(\mathcal{E}) = [\omega], \tag{2.7}$$

is an isomorphism.

KN/SCH-KdV: $u_t = u_{xxx} - \frac{3}{2} \frac{u_{xx}^2}{u_t}$

Longer for

$$\mathcal{E} = -\frac{1}{n_x} D_x \frac{1}{n_x}$$

$$\mathcal{E} = \frac{1}{u_x} D_x \frac{1}{u_x}$$

$$\omega = -\frac{1}{2u_x^2} dx \wedge \theta^0 \wedge \theta^1 +$$

 $dt \wedge \left[\theta^0 \wedge \left(\frac{4u_{xxx}u_x - 3u_{xx}^2}{4u^4}\theta^1 + \frac{u_{xx}}{2u^3}\theta^2 - \frac{1}{2u_x^2}\theta^3\right) + \frac{1}{u_x^2}\theta^1 \wedge \theta^2\right].$

 $\mathcal{E}_0 = \frac{1}{u^2} D_x^3 - 3 \frac{u_{xx}}{u^3} D_x^2 + \left(3 \frac{u_{xx}^2}{u^4} - \frac{u_{xxx}}{u^3} \right) D_x.$

$$\underline{\mathsf{PCKdV:}}\ u_t = u_{\mathsf{xxx}} + \frac{1}{2}u_{\mathsf{x}}^2 - \frac{u}{2t}$$

Longer for

 $\omega = -t dx \wedge \theta^{0} \wedge \theta^{1} + dt \wedge (t u_{x} \theta^{0} \wedge \theta^{1} + t \theta^{0} \wedge \theta^{3} - 2t \theta^{1} \wedge \theta^{2})$

 $\mathcal{E}_0 = t^2 D_x^3 + \frac{1}{3} (2t^2 u_x + tx) D_x + \frac{1}{6} (2t^2 u_{xx} + t).$

Summary

The existence of Variational operators is equivalent to $H^{1,2}(\mathcal{R}^{\infty}) \neq 0$.

All variational operators and Lagrangians can be found using the 3 steps

- **1** Find $[\omega] \in H^{(1,2)}(\mathcal{R}^{\infty})$
- **2** Go to canonical form representative ω to find ${\mathcal E}$
- **3** Use the snake lemma to find L.

D + 2

Part 3:

Bicomplex formulation of Symplectic Hamiltonian Evolution Equations

Symplectic Hamiltonian Evolution Equations

A time-independent evolution equation defined through

$$\Delta = u_t - K(x, u, u_x, \dots, u_n)$$

is a Symplectic Hamiltonian Evolution Equation if

- 1) there exists a symplectic differential operator $S = s_i(x, u, u_x, ...)D_x^i$ and
- 2) a function $H(x, u, u_x, ...)$ such that,

$$S(K) = \mathbf{E}(H). \tag{3.1}$$

A time dependent formulation is tougher to track down....

The time-independent formulation in terms of the variational bicomplex leads easily to the time dependent one, which I'll give.

The $\Omega_{tob}^{r,s}(E)$ Bicomplex

Let $E = \mathbb{R} \times J^{\infty}(\mathbb{R}, \mathbb{R})$ with coordinates $(t, x, u, u_x, u_{xx}, \ldots)$. The total x derivative vector field is

 $D_{\mathsf{v}} = \partial_{\mathsf{v}} + u_{\mathsf{v}} \partial_{\mathsf{u}} + u_{\mathsf{v}\mathsf{v}} \partial_{\mathsf{u}} + \dots$

Let $\Omega_{t_{ch}}^{r,s}(E)$ be the bicomplex of t semi-basic forms on E,

The contact forms on E are,

 $\theta_F^i = du_i - u_{i+1} dx$.

 $\Omega_{t}^{r,s}(E) = \{ \omega \in \Omega^{r,s}(E) \mid \partial_t - \omega = 0 , r = 0, 1; s = 0 \dots \}.$

(3.2)

A generic form $\omega \in \Omega^{1,2}_{t}(E)$ is given by

$$\omega = d\mathsf{x} \wedge \theta_{\mathsf{E}}^i \wedge \theta_{\mathsf{E}}^j \cdot \xi_{ij}, \qquad \xi_{ij}(\mathsf{t},\mathsf{x},\mathsf{u},\mathsf{u}_\mathsf{x},\mathsf{u}_\mathsf{x},\mathsf{u}_\mathsf{x},\ldots) \in C^\infty(\mathsf{E}).$$

The anti-derivations $d_H^E: \Omega_{t_{ob}}^{r,s}(E) \to \Omega_{t_{ob}}^{r+1,s}(E)$ and $d_V^E: \Omega_{t_{ob}}^{r,s}(E) \to \Omega_{t_{ob}}^{r,s+1}(E)$ are

The anti-derivations
$$d_H^E: \Omega_{\mathbf{t}_{\mathrm{sb}}}(E) \to \Omega_{\mathbf{t}_{\mathrm{sb}}}(E)$$
 and $d_V^E: \Omega_{\mathbf{t}_{\mathrm{sb}}}(E) \to \Omega_{\mathbf{t}_{\mathrm{sb}}}(E)$ are
$$d_U^E(\omega) = d_X \wedge D_v(\omega), \quad d_V^E(f) = f_i \theta_E^i, \quad d_V^E \theta_E^i = 0. \tag{3.3}$$

 $d_{\mathcal{U}}^{\mathsf{E}}(\omega) = d\mathbf{x} \wedge D_{\mathsf{x}}(\omega), \quad d_{\mathcal{V}}^{\mathsf{E}}(f) = f_{i}\theta_{\mathsf{F}}^{i}, \quad d_{\mathcal{V}}^{\mathsf{E}}\theta_{\mathsf{F}}^{i} = 0,$ and satisfy $(d_H^E)^2 = 0$, $(d_V^E)^2 = 0$, $d_H^E d_V^E + d_V^E d_H^E = 0$. However $d \neq d_H^E + d_V^E$.

Integration by parts operator

The integration by parts operator $I_E:\Omega^{1,s}_{\mathrm{t_{sb}}}(E) o\Omega^{1,s}_{\mathrm{t_{sb}}}(E)$ ($s\geq 1$) is

$$I_{E}(\Sigma) = \frac{1}{s} \theta_{E}^{0} \wedge \sum_{i=0}^{\infty} (-1)^{i} (D_{x})^{i} (\partial_{u_{i}} - \Sigma), \quad \Sigma \in \Omega_{t_{sb}}^{1,s}(E)$$
 (3.4)

We let the **space of functional** s-**forms** be the image,

$$\mathcal{F}_{t_{sb}}^{s}(E) = I_{E}\left(\Omega_{t_{sb}}^{1,s}(E)\right). \tag{3.5}$$
 Equations 3.4 and 3.5 shows if $\Sigma \in \mathcal{F}_{t_{sb}}^{2}(E)$ then there exists $\rho \in \Omega_{t_{sb}}^{0,1}(E)$ such that

$$\Sigma = dx \wedge \theta_E^0 \wedge \rho \,, \qquad \rho = s_i \theta_E^i. \tag{3.6}$$

The operator I_E has the properties,

$$\Sigma = I_{\mathcal{E}}(\Sigma) + d_{H}^{\mathcal{E}}\eta, \qquad I_{\mathcal{E}}^{2} = I_{\mathcal{E}}, \qquad \text{Ker } I_{\mathcal{E}} = \text{Image } d_{H}^{\mathcal{E}}. \tag{3.7}$$

The property $\operatorname{Ker} I = \operatorname{Image} \ d_H^{\it E}$ leads to the Augmented Variational Bicomplex

The Augmented Variational Bicomplex on $\mathbb{R} \times J^{\infty}(\mathbb{R}, \mathbb{R})$

$$\operatorname{Im} d_H^E = \ker I_E, \quad \operatorname{Im} (\delta_V^E)^i = \ker (\delta_V^E)^{i+1}.$$

Exact rows, columns, and δ_V^E (+lower row is Euler Complex)

$$\begin{array}{c|c} \vdots & \vdots & \vdots \\ d_V^E & d_V^E \\ 0 \longrightarrow \Omega_{\mathbf{t}_{\mathrm{sb}}}^{0,2}(E) \stackrel{d_H^E}{\longrightarrow} \Omega_{\mathbf{t}_{\mathrm{sb}}}^{1,2}(E) \stackrel{I_E}{\longrightarrow} \mathcal{F}_{\mathbf{t}_{\mathrm{sb}}}^2(E) \longrightarrow 0 \\ d_V^E & d_V^E \\ 0 \longrightarrow \Omega_{\mathbf{t}_{\mathrm{sb}}}^{0,1}(E) \stackrel{d_H^E}{\longrightarrow} \Omega_{\mathbf{t}_{\mathrm{sb}}}^{1,1}(E) \stackrel{I_E}{\longrightarrow} \mathcal{F}_{\mathbf{t}_{\mathrm{sb}}}^1(E) \longrightarrow 0 \\ d_V^E & d_V^E \\ R \longrightarrow \Omega_{\mathbf{t}_{\mathrm{sb}}}^{0,0}(E) \stackrel{d_H^E}{\longrightarrow} \Omega_{\mathbf{t}_{\mathrm{sb}}}^{1,0}(E) \end{array}$$

Time Dependent Symplectic Forms and Hamiltonian Vector Fields

Definition

A form $\Sigma \in \mathcal{F}^2_{t_{\mathrm{sb}}}(E)$ is symplectic on Γ if Σ is non-vanishing and $\delta^E_V \Sigma = 0$. A differential operator $\mathcal{S} = s_i D^i_x$ is symplectic if $dx \wedge \theta^0_E \wedge \mathcal{S}(\theta^0_E)$ is a symplectic form

Since δ_V^E complex is exact, then for Σ symplectic

$$\Sigma = dx \wedge \theta_E^0 \wedge \mathcal{S}(\theta_E^0) = dx \wedge \theta_E^0 \wedge (s_i \theta_E^i) = \delta_V^E (dx \wedge \theta_E^0 \cdot P).$$

$$\phi = dx \wedge \theta_E^0 \cdot P \in \mathcal{F}^1_{t_{sb}}(E)$$
 is a symplectic potential.

The **suspension** of the evolutionary vector field $Y = \operatorname{pr}(K\partial_u)$ is $T = \partial_t + Y = \partial_t + K\partial_u + D_x(K)\partial_u + \dots$

Definition

 $rac{1}{2}P_t + \mathcal{S}(\mathcal{K}) = \mathbf{E}(H)$

 $u_t = K$ is a symplectic Hamiltonian evolution equation and $Y = pr(K\partial_u)$ is Hamiltonian vector field with respect to the symplectic form $\Sigma \in \mathcal{F}^2_{t_{sb}}(E)$ if

$$\mathcal{L}_{ au}^{
atural} \Sigma = I_{ extstyle F} \circ \pi^{1,2} \circ \mathcal{L}_{ au} \Sigma = I_{ extstyle F} \circ \pi^{1,2} \circ T(\Sigma) = 0.$$

(3.8)

Here $\mathcal{L}_T^{\natural} = I_F \circ \pi^{1,2} \circ \mathcal{L}_T$ is the Lie derivative on functional 2-forms.

LemmaThe vector field $Y = pr(K\partial_u)$ is Hamiltonian for $\Sigma = dx \wedge \theta_E^0 \wedge \mathcal{S}(\theta_E^0)$ if and only

if there exists $H(t, x, u, u_x, ...)$ such that

where
$$dx \wedge \theta_E^0 \cdot P$$
 is a symplectic potential.

For time independent $\boldsymbol{\Sigma}$ this gives the standard condition

$$\mathcal{S}(K) = \mathbf{E}(H)$$

Symplectic if and only if Variational We find-

vve iiiu

Theorem

The form $\Sigma = dx \wedge \theta_E^0 \wedge (s_i \theta_E^i)$ is symplectic, and $Y = pr(K\partial_u)$ is a Hamiltonian vector field for Σ if and only if

 $\omega = dx \wedge \theta^0 \wedge \epsilon - dt \wedge \sum_{i=1}^{2m+1} \left(\sum_{j=1}^{J} (-X)^{a-1} \left(\frac{\partial K}{\partial u_i} \epsilon \right) \wedge \theta^{j-a} \right)$

(3.9)

satisfies
$$d_H\omega=0$$
, where $\epsilon=\mathcal{S}(\theta^0)=s_i\theta^i$

Corollary

The induced map $\Pi: H^{1,2}(\mathcal{R}^{\infty}) \to \mathcal{F}^2_{\mathrm{f.s.}}(E)$ given by

$$\Pi(dx \wedge \theta^0 \wedge (r_i \theta^i) - dt \wedge \sum_{i=1}^{2m+1} \left(\sum_{a=1}^j (-X)^{a-1} \left(\frac{\partial K}{\partial u_j} \epsilon \right) \wedge \theta^{j-a} \right)) = dx \wedge \theta_E^0 \wedge (r_i \theta_E^i)$$

is isomorphism to symplectic forms for which $u_t=K$ is a symplectic Hamiltonian equation.

Part 4:

Hamiltonian and Variational/Symplectic Operator Reduction

First Order Hamiltonians

Suppose we have a first order Hamiltonian evolution in canonical form

$$z_t = D_x \left(\frac{\delta H}{\delta z} \right) \tag{4.1}$$

Going to potential form $z = u_x$ gives

$$u_{tx} = \left[D_x \left(\frac{\delta H}{\delta z} \right) \right] \bigg|_{z=u_x} = D_x \left[\left(\frac{\delta H}{\delta z} \right) \bigg|_{z=u_x} \right]$$
 (4.2)

integrating gives a potential form,

$$u_t = \frac{\delta H}{\delta z} \bigg|_{z=u_x} \tag{4.3}$$

The translation in u invariant u_x satisfies 4.2, and hence $z=u_x$ satisfies 4.1 and 4.1 is the quotient of 4.3 by translation in u.

Applying D_x to the potential form gives

$$D_{x}\left(u_{t}-\frac{\delta H}{\delta z}\Big|_{z=u_{x}}\right)=u_{tx}-D_{x}\left(\frac{\delta H}{\delta z}\Big|_{z=u_{x}}\right). \tag{4.4}$$

On the other hand the change of variables formula in CV gives

$$\frac{\delta}{\delta u} \left(H|_{z=u_x} \right) = -D_x \left(\frac{\delta H}{\delta z} \Big|_{z=u_x} \right)$$

and equation 4.4 is

$$D_{x}\left(u_{t}-\left(\frac{\delta H}{\delta z}\right)\Big|_{z=u_{x}}\right)=E\left(-\frac{1}{2}u_{t}u_{x}+H|_{z=u_{x}}\right). \tag{4.5}$$

Therefore D_x is a variational/symplectic operator for the potential form, with the Lagrangian being the pullback of the Hamiltonian.

Theorem

Every Hamiltonian evolution equation $z_t = \mathcal{D}(\delta H)$ with first order Hamiltonian \mathcal{D} is the symmetry reduction of an equation $u_t = K$, of the same order, which admits a first order variational operator \mathcal{E} and $\pi_*\mathcal{E} = \mathcal{D}$.

(le. The symmetry reduction of an integrable extension which admits a Variational operator).

Compatible Bi-Hamiltonian Scalar Evolution Equations

Theorem

Let

$$z_t = K(x, z, z_x, \dots, z_{2m+1}) = D_x \left(\frac{\delta H_1}{\delta z}\right)$$

with potential form

$$u_t = \frac{\delta H_1}{\delta z} \bigg|_{z=u_x}.$$

(4.6)

(4.7)

(4.8)

Let $\mathcal D$ be a Hamiltonian operator satisfying the compatibility condition

$$\mathcal{D}\left(\frac{\delta H_1}{\delta z}\right) = D_x \left(\frac{\delta H_2}{\delta z}\right)$$

Then the potential form satisfies
$$\mathcal{E}(u_t) = -\frac{\delta}{\delta u}(H_2|_{z=u_x})$$
 where $\pi_*\mathcal{E} = \mathcal{D}$.

Proof.

We apply $\ensuremath{\mathcal{E}}$ to RHS of equation 4.7, and use condition 4.8

$$\mathcal{E}\left(\frac{\delta H_1}{\delta z}\Big|_{z=u_x}\right) = \left[\mathcal{D}\left(\frac{\delta H_1}{\delta z}\right)\right]\Big|_{z=u_x}$$
$$= D_x\left(\frac{\delta H_2}{\delta z}\right)\Big|_{z=u_x}$$
$$= -\frac{\delta}{\delta u}(H_2|_{z=u_x}).$$

Where the last line follows as before from the change of variables formula for variations.

REMARK: For third order \mathcal{D} , the operator \mathcal{E} is symplectic and hence a variational operator for the potential form and the pullback H_2 in equation 4.8 is part of the Lagrangian for the second variational operator.

(4.9)

Lagrangian for the second variational operator.

REMARK: Conversely invariant Variational operators quotient to Hamiltonian ones.

The Potential Cylindrical KdV: $\Delta = u_t - u_{xxx} - \frac{1}{2}u_x^2 + \frac{u}{2t}$ The third order variational operator for the potential cylindrical KdV is

$$\mathcal{E}_0 = t^2 D_x^3 + \frac{1}{3} (2t^2 u_x + tx) D_x + \frac{1}{6} (2t^2 u_{xx} + t).$$

$$\mathcal{E}_0\left(u_t - u_{xxx} - \frac{1}{2}u_x^2 + \frac{u}{2t}\right) = \mathbf{E}\left(Q_0(u_t - u_{xxx} - \frac{1}{2}u_x^2 + \frac{u}{2t}) - \frac{1}{72}\left(t^2u_x^4 + 2txu_x^3\right)\right)$$

 $Q_0 = -\frac{1}{6} \left(t^2 u_x^2 + t x u_x + 3 u_{xxx} t^2 \right)$ The reduction of the potential cylindrical KdV by ∂_u is the cylindrical KdV.

$$w_t = w_{xxx} + \frac{1}{\sqrt{t}}ww_x = \mathcal{D}_1(\mathbf{E}(H_1)) = \mathcal{D}_0(\mathbf{E}(H_0))$$
 (4.10)

Substitute $w = \sqrt{t} u_x$ into the x-derivative of potential cylindrical KdV gives

where

 $\mathcal{D}_1 = D_x, \ H_1 = \frac{1}{2}w_x^2 + \frac{1}{6\sqrt{t}}w^3, \quad \mathcal{D}_0 = D_x^3 + \frac{2w}{3\sqrt{t}}D_x + \frac{w_x}{3\sqrt{t}}, \quad H_0 = \frac{1}{2}w^2.$ Equation 4.10 is obtained from the standard form of the cylindrical KdV equation

by $w = \sqrt{t} v$. Some references say no Hamiltonians for the cylindrical KdV.

Harry-Dym/KN

The quotient of the KN/Schwartzian KdV

$$u_t = u_{xxx} - \frac{3u_{xx}^2}{2u_x}.$$

by translation in x gives Harry-Dym

$$z_t = z^3 z_{xxx}$$

and the KN equation is the potential form.

The Hamiltonian operators for the HD equation are reduction of the symplectic for KN.