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This is a summary of the paper with Emrullah Yasar:

Variational Operators, Symplectic Operators, and the Cohomology of Scalar
Evolution Equations

@ Variational Operators and Symplectic Operators and the Variational Bicomplex

@ Coverings and reduction for Hamiltonian Evolution equations.



The Multiplier Problem in Calculus of Variations

Given a differential equation/system
A(x,u,0u) =0

does there exists a function A(x, u,du) and a Lagrangian L(x, u, du) such that

A A = E(L)

here E is the Euler-Lagrange operator, and the function A(x, u, Qu) is called the
variational multiplier

Long history, going back to Helmholtz, and maybe even longer....



Example

For a 4th order ODE
d*u
dx*

admits a variational multiplier if and only if

= F(X7 u, Uy, Uxx, uxxx)
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This is about the best we can hope for.
Shown using the cohomology of the variational bicomplex.

The bicomplex approach also produces the multiplier A and Lagrangian L in a
geometric way.



Variational Operator
The multiplier problem can be generalized : Given a differential equation

A(x,u,0u) =0

does exists a differential operator £ and a Lagrangian L(x, u,du) such that

£(A) = E(L).

If £ is a function, then this is the variational multiplier problem as before. In
general call £ a variational operator.

The focus here will be scalar evolution equations A = uy — K(t,x, u, Uy, ..., Up).
This is related to the Symplectic/Hamiltonian formulation of evolution equations.
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Examples:
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Low Order Case :u; = K(t, X, U, Uy, Usx, Uxxx)
We find using the bicomplex

Theorem

ur = K(t,x, u, Uy, Uxx, Uxxx) admits a first order variational operator

1
E =R(t,x,u,uy,...)Dy + EDXR

if and only if the following is a trivial conservation law,

K :k2dx+

~ 1 ~ ~ ~ ~
(—Ko + KiKa = S(X(K3)KZ + KaK3) + X(K3)X (Ka) + K3X2(K2)) dt

where K; = 9iK, Ky = 3;%—3(K’2 — X(K3)), and X is the total x derivative

X:8XJFUX8L’+UX)<8UX+'~~,

Furthermore, when x = dy(log R) then u; = K admits the first order variational
operator £ = RD, + %DXR.



Examples:

PCKdAV: u; = ty + 2ux = o

1
= ;dt = dylogt, E =1tD,
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KN/SCH-KdV: u; = ux — %
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1 u
= _—p _ B
w2 W
KdV : v = Uy + Uy
Kk = —2u,dt

and « is not a conservation law. No first order operator.




Part 1:

The Variational Bicomplex.



The Unconstrained Jet Space

Reference: Anderson , Kamran, The Variational Bicomplex for Hyperbolic
Second-order Scalar Partial Differential Equations in the Plane.

On J®(R2,R) = (t, X, U, Ug, Uy, Ust, Up, Uxx, - - -) the t and x total vector fields are
Dl‘ = 81: + Utau + Uttaut —+ Utxﬁux SPI
Dy = Ox + uxOy + Us Oy, + U Oy, - - ..

With u; = Di(u) = Usxxx..., Ur.i = D.(u:), the contact forms are

90 = du — updt — uydx,
9 = DL(°) = du; — upidt — uppdx™ P> 1,
9> = (Dy)?DL(¥°), a>1,i>0.

D (9°) is the repeated Lie derivative.



The Unconstrained Bicomplex

The contact forms together with dt, dx give a coframe for J°(R? R).

This gives rise to a bi-grading of forms
Q75 (J°(R?,R)) € QF(J<(R?, R))

r=0,1,2 - the degree of dt, dx or horizontal forms

s > 0 - the degree of contact forms or vertical forms.

Example: w € Q12(J>*(R?,R)),

w = (tux + x2u)dt NIV A D2 + upesin(xt)dx A 933 A 03

9 = DD, (6°) = dup — U dt — Uppedx,
92 = D?(0°) = duy — Updt — Uyedx, . ...




The Unconstrained Differentials dy and dy/
The horizontal differential is an anti-derivation,

dy - Q7 (J°(R?, R)) — QT15(J°(R? R)),
computed using the Lie derivative D;(w) and Dy (w), w € Q"$(J>(R2,R)) by,

dyw = dt A De(w) + dx A Dy(w).

The vertical differential is an anti-derivation
dy : Q5(J®(R3 R)) — Q*T1(J~(R?, R))
which satisfies,

OF o, OF 1 ooy, OF
a0 a0+ 5

dy 9™ =0, dydt =0, dydx=0.

dyf(t,x,u,ug, Uy,...) = D (9°) + ...,

The important properties of dy, dy are

d3 =0, d2 =0, dydy + dydy =0



The Unconstrained Variational Bicomplex.

The rows and columns of the unconstrained variational bicomplex are exact.

dy dy dy
0 —— Q02(J) —2. QL2 ) —%. g22( )
dy dy dy
0 ——= QOI(J) —H QuL( )~ 21()
dy dy dy

R —— Q00( )~ 10(.J) ~ 920( )

0Y(IR%) —1- Q1(R?) —= Q*(IR?)



The Equation Manifold
Start with the function A whose zero set defines a scalar evolution equation,

A= ur— K(t, X, Uy Uy, ..., Up), K € C®(J™(R? R)).

Let R™ = (t, X, U, Uy, Uxx, - - .) and ¢ : R — J*®(R2 R),
v=(t,x,u,ux = Uy, up = K up = T(K), te = X(K), Unx = Usx, - - -)
the inclusion of the infinite prolongation of A = 0 where T and X are

T =0+ KOy + X(K)0y, + X3(K)0u, + ... ,

(1.1)
X = Ox + uxOy + U Oy, + ...

and T, X are the restriction of D; and D, to R°°,
The Pfaffian system Z on R is the pullback of the contact system on J*°(R? R),

0° = .*(du — updt — udx) = du — Kdt — uydx, (1.2)
0" = 10" = du; — X'(K)dt — uj1dx '

generate 7.
Solutions to A = 0 are integral manifolds of Z = {6'}>.



The Constrained Variational Bicomplex

The bicomplex Q75(R>®) = 1*Q"*(J®(R%,R)), r =0,1,2 and s = 0,1, .. .
If w € QL2(R>) then

w = dx A (a;0' AN) + dt A (b0 A )
where aji(t, x, U, Uy, U, . . .), bjj(t, X, U, Ux, U, .. .) € CP(R™).
The induced anti-derivation dy : Q"5(R>°) — Q" T1S(R>) is
dyw = dt A T(w) + dx A X(w), T = D¢|ree, X = Dy|re

The induced vertical differential d\ : Q"*(R>) — Q"5T1(R*>°) is dy = d — du.
The operations dy and dy satisfy as in the unconstrained case,

d}=0 dZ =0, dydy=—dydy. (1.3)
Except : The horizontal dy complex may not be exact (vertical dy is), and

HrS (R = Ker {dy : Q"$(R>®) — Q*+1s(R>)}
~ Im{dy : QLS(R>®) = Qrs(R®)}




(1,

s)- Conservation Laws

The kernel of dy : Q15(R>) — Q%5(R>°) are (1,s) conservation laws.

r

Example: u; = |/ -, The form x € Q'%(R>)

2
4ux><x Uxxxxx — 5 u

K = /U dX — 1607 XX dt
satisfies
4Ux><x Usxxxx — 5U2
dur = (T () + ( 1603 ))t/\dx 0

is a conservation law and [x] € HY0(R>). The form n € QL1(R>),

2 Ulloo T+ 2Ux Uxxx
n = dxA6°- (—3uxuxxx = quXXX> dt/\Z( X)? <3

6o
satisfies dyn = 0 so is a (1, 1)-conservation law and [n] € HY1(R>).

Here [n] # dv[¢], [¢] € HM(R™).

03—3)




Part 2:

The Cohomology H'?(R>°) and Variational Operators.



Normal Form for H*(R>)

Reference: Anderson , Kamran, The Variational Bicomplex for Hyperbolic
Second-order Scalar Partial Differential Equations in the Plane.

Theorem

For any [w] € HYS(R>), s > 1 there exists a representative,
w=dx A Ap—dtAp, (2.1)
where p € QUS~HR>), B € Q(R>®) and

La(p) = =T (p) = (=X)'(Kip) = 0.

If s=1, pis a function and L} (p) = 0 is the "equation for the characteristic”.
Corollary
@ For s > 3 there are no non-zero solutions to L (p) =0, p € Q%*~1(R>°), and
so HYS(R>®) =0, s > 3.
@ For all [w] € HY?(R>°) there exists a dy closed representative.

@ For A even order there are no non-zero solutions to L\ (p) = 0,
p € Q%1(R>), and so H*?(R*>®) =0, s > 2.



Variational Operators and H?(R>)

A Lagrangian A is a differential form,
A\ = L(t,x, u,du)dt A dx € Q>°(J=(R? R))
The fundamental computation in Calculus of Variations is:

dy A = dy(L(t,x, u,du)dt A dx) = dt A dx A 6° - E(L) + dun

E(L) is the Euler-Lagrange expression for L
n € QL1(J~(R? R)) is the boundary term.

If A admits a variational operator
E(A) = ri(t,x, u, uy,...)DL(A) = E(L)
Equation 2.2 is then
dy(Ldt A dx) = dt Adx AO°- E(A) + dun

Restrict 2.3 to A = 0 (pullback by ¢ : R — J*(R2 R)) so £(A) =0,
dyo*(Ldt A dx) = dye™n.



Continuing from

dyi*(Ldt A dx) = dpi*n, n € QM ((J~(R? R)) (2.4)

Lemma
The form w = dy(t*n) € QY2(R>°) is dy-closed so that [dyi*n] € HY?(R™>).
Futhermore w is a d\ closed representative.

Proof.
Take dy of w = dy(t*n) and use dydy = —dydy, and d2 = 0 in equation 2.4. I

This gives an onto linear mapping ® : Vo,(A) — HY2(R>),
®(E) = [dvi™n).

a ) Find for [w] a dy closed representative. 0

b ) By vertical exactness w = dy. Tdv

c) dvdyn = —dpdyn = —dyw =0 Tdv

d ) Use vertical exactness dyn = dy A and lift off R I ——duny

(key argument produces &, \) di Tdv



The normal form for [w] € H12(R°°) representative given previously-
w=dx A Ap—dtAp, (2.5)

can be modified to a full canonical form leading to the following correspondence.

Theorem
Let & = ri(t,x,u,uy,...)D. i =0,...,k be a kt" order differential operator and
A=u — K(t,x,u, Uy, ...,Um+1),m > 1 an odd order evolution equation.

@ & is a variational operator for A if and only if £ is skew-adjoint and
2m+1 Jj 8K
w=dxABOAe—dt A _x)*! (€>A9ja ’6
J'Zl (2( : duj (26)

is dyy closed on R, where e = —1*E(9°) = —1rX'(6°).
@ Let V,,(A) be the vector space of variational operators for A. The function
P : Vop(A) — HY2(R>°) defined from equation 2.6 by

o(€) = [, (27)

is an isomorphism.



2
1 1
E= =D —
Uy Ux
= 1d/\eo/\e1
T

4 xxx Ux T z I xx
an [00 " (W@l 5 ;’ 0 — 293) ﬁgl M)g] .

X

Longer for

1 u u2 u
Ey= D3 _32XXp2 (32x _ XX\ p
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PCKdV: u; = U + 3 L — 1

x T 2t
E= tDy
w=—tdx AONO" + dt A (tud® A O+ t6° A 6> — 2t0" A 67)
Longer for
& = t2D3 + %(thux + tx)Dy + %(thuxx + t).




Summary

The existence of Variational operators is equivalent to H1:2(R>°) # 0.

All variational operators and Lagrangians can be found using the 3 steps

® Find [w] € HA2(R>)
@ Go to canonical form representative w to find £
® Use the snake lemma to find L.



Part 3:

Bicomplex formulation of Symplectic Hamiltonian
Evolution Equations



Symplectic Hamiltonian Evolution Equations

A time-independent evolution equation defined through
A =u— K(x,u, Uy, ...,up)

is a Symplectic Hamiltonian Evolution Equation if

1) there exists a symplectic differential operator S = s;(x, u, uy, ...)D. and
2) a function H(x, u, uy,...) such that,

A time dependent formulation is tougher to track down....

The time-independent formulation in terms of the variational bicomplex leads easily
to the time dependent one, which I'll give.



The Q{”’ (E) Bicomplex
Let E =R x J*(R,R) with coordinates (t, x, u, Uy, Usx, - - -)-
The total x derivative vector field is

Dy = Ox 4+ uxOy + Usx Oy, + . . ..

The contact forms on E are,

9{5 = du; — ujy1dx. (3.2)

Let Q;”” (E) be the bicomplex of t semi-basic forms on E,
QP(E)={weQ*E)|d-w=0 ,r=0,1;5=0...}.
A generic form w € Q%E(E) is given by

w=dx AOEANOL -5, Ei(t X, U, Uy, Uy, . .) € CP(E).

The anti-derivations df; : Q* (E) — ngl’s(E) and df : Q{ (E) — Qg;zﬂ(E) are
dE(w) = dx A Dy(w),  dE(F)= 0k, dE0E =0, (33)
and satisfy (df)* =0, (df)?> = 0,d5dE + dfdf = 0. However d # df; + df.



Integration by parts operator

The integration by parts operator I¢ : Q¢°(E) — QU°(E) (s > 1) is
I£(%) = %92 A i(—l)"(DX)"(&,i - %), TeQ(E) (3.4)
i=0
We let the space of functional s-forms be the image,
i (E) = le (242(B)) (35)
Equations 3.4 and 3.5 shows if £ € 72 (E) then there exists p € Q(t)i(E) such that
Y =dx A2 Ap, p = si0%. (3.6)

The operator /g has the properties,

Y = Ig(X) + dfn, I2=1g,  Kerlg = Image df. (3.7)

The property Ker | = Image df leads to the Augmented Variational Bicomplex



The Augmented Variational Bicomplex on R x J*(R,R)

Im dﬁ = ker IE7 Im(&g)’ — ker((s\E/)i.i,.l.

Exact rows, columns, and 55 (+lower row is Euler Complex)

dy; dy; Té%
dE
0—=QPX(E) —= QX (B) 2= F2 (B) —=0
af af 6f
d
0— QM(E) - Qb (E) 2= FL (E) —0
g i %
%



Time Dependent Symplectic Forms and Hamiltonian Vector Fields

Definition

A form ¥ € F2 (E)is symplectic on I if X is non-vanishing and X =0. A
differential operator S = s;D! is symplectic if dx A 62 A S(62) is a symplectic form
Since 65 complex is exact, then for ¥ symplectic

Y = dx AL AS(02) = dx A OL A (si0%) = 65 (dx A 6% - P).

¢ =dx A0 -PecF. (E)is a symplectic potential.



The suspension of the evolutionary vector field Y = pr(K9J,) is

T=0:+Y =0+ K0, + D«(K)Oy, + ... ,.

Definition
uy = K is a symplectic Hamiltonian evolution equation and Y = pr(K9,) is
Hamiltonian vector field with respect to the symplectic form ¥ € 72 (E) if

LAY =lgort? o LrE = [gont? 0 T(X) =0. (3.8)
Here Lh-r = lg o w2 0 L7 is the Lie derivative on functional 2-forms.

Lemma

The vector field Y = pr(K3,) is Hamiltonian for ¥ = dx A 8% A S(0%) if and only
if there exists H(t, x, u, uy, ...) such that

*Pet S(K) = E(H)

where dx A 0% - P is a symplectic potential.

For time independent ¥ this gives the standard condition
S(K) = E(H)



Symplectic if and only if Variational
We find-

Theorem

The form ¥ = dx A 0 A (si0%) is symplectic, and Y = pr(Kd,) is a Hamiltonian
vector field for ¥ if and only if

w:dx/\eo/\e—dt/\2§1<i(—x) (ZUK>/\HJ> (3.9

Jj=1 a=1

satisfies dyw = 0, where e = S(0°) = 5,0’

Corollary

The induced map N : HY2(R*>) — FZ (E) given by

2m+1 i oK )
N(dx A 6° A thZ (Z x)al<a )/\6" ))_dx/\H%/\(r;O’E)
— a=1 J

is isomorphism to symplectic forms for which uy = K is a symplectic Hamiltonian
equation.



Part 4:

Hamiltonian and Variational /Symplectic Operator
Reduction



First Order Hamiltonians

Suppose we have a first order Hamiltonian evolution in canonical form

z = D, (‘;Z) (41)

Going to potential form z = u, gives

oH oH
w= o ()], 2| (52) ] 2
integrating gives a potential form,
oH
Uy = Sz - (4-3)

The translation in v invariant u, satisfies 4.2, and hence z = u, satisfies 4.1 and
4.1 is the quotient of 4.3 by translation in u.



Applying D, to the potential form gives

DX (Ut — 5j ) = Utx — DX (i’:’ ) . (44)

6z
On the other hand the change of variables formula in CV gives

z_ux>
and equation 4.4 is

oH 1
D, (ut — (52> Zux) =E (—2utux + H|Z_UX> . (4.5)

Therefore D, is a variational /symplectic operator for the potential form, with the
Lagrangian being the pullback of the Hamiltonian.

1) oH
E (H|z:ux) - _DX (52




Theorem

Every Hamiltonian evolution equation z; = D(6H) with first order Hamiltonian D
is the symmetry reduction of an equation u; = K, of the same order, which admits
a first order variational operator £ and w,E = D.

(le. The symmetry reduction of an integrable extension which admits a Variational
operator).



Compatible Bi-Hamiltonian Scalar Evolution Equations

Theorem
Let 5
Zt = K(XaZ7ZXa~--;22m+1): Dy (521> (46)
with potential form
OH;
= . 4.7
t 0z |, (G

Let D be a Hamiltonian operator satisfying the compatibility condition

(%4 =, () o)

Then the potential form satisfies £(u;) = — - (Ha|,=.,) where m.& = D.



Proof.

We apply € to RHS of equation 4.7, and use condition 4.8

(SHl 6Hl
El — =|D|—
(=) -PEIL
D, (5’4) (4.9)
0z ) |,y
)
=——(H z=uy )+
G
Where the last line follows as before from the change of variables formula for
variations. |

REMARK : For third order D, the operator £ is symplectic and hence a variational
operator for the potential form and the pullback H, in equation 4.8 is part of the
Lagrangian for the second variational operator.

REMARK : Conversely invariant Variational operators quotient to Hamiltonian
ones.



The Potential Cylindrical KdV: A = u; — Uy — %ui + 55
The third order variational operator for the potential cylindrical KdV is

1 1
& = t2D3 + §(2t2ux + tx)Dy + 6(2t2uxx + t).

1 u 1 u 1
& (ut — Ugex — Eui + 21‘) =E <Q0(ut — Upox — §u§ + 271“)7772 (t2u§ + 2txu>3<)>

where

QO = —% (t2u>2( + txuy + 3Ux><xt2)

The reduction of the potential cylindrical KdV by 3, is the cylindrical KdV.
Substitute w = \/t u, into the x-derivative of potential cylindrical KdV gives

1
Wit = Wixx + WWWX = Dl(E(Hl)) = Do(E(Ho)) (410)
where
1 1 2w w; 1
D :DX7 H :7W2+7W37 D :D3+7Dx+ X7 H :*Wz.
1 1 2 X 6\/% 0 X 3\/E 3\/; 0 5

Equation 4.10 is obtained from the standard form of the cylindrical KdV equation
by w = v/t v. Some references say no Hamiltonians for the cylindrical KdV.



Harry-Dym /KN

The quotient of the KN/Schwartzian KdV

302
XX
Ut = Uxxx — .
2uy
by translation in x gives Harry-Dym
3
Zt = Z" Zxxx

and the KN equation is the potential form.
The Hamiltonian operators for the HD equation are reduction of the symplectic for
KN.



