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Plan:

I Painlevé equations;
I Isomonodromy and Riemann-Hilbert;
I Affine cubics;
I Singularities and cluster transformations;
I Quantisation an relations to Sklyanin algebras
I Perspectives and output;



Painlevé equations

The Painlevé equations are non linear second order ODE of the form

d2w

dz2 = F

(
z ,w ,

dw
dz

)
, z ∈ C,

where F (z ,w , y) is a rational function of z ,w , y and the solutions
w(z ; c1, c2) satisfy
1. Painlevé–Kowalevski property: w(z ; c1, c2) have no critical

points that depend on c1, c2.
2. Otherwise, they are the only second order ODE without

movable singularities (branching points).
3. For generic c1, c2, w(z ; c1, c2) are new functions, Painlevé

Transcendents.



Painlevé property:
I Example for 1-st ordre ODE:

w ′ = w =⇒ w = ez−z0 , X

w ′ = w2 =⇒ w =
1

z0 − z
, X

w ′ = w3 =⇒ w ∼ 1√
z − z0

. X



Painlevé I,II,II,IV

d2w

dz2 = 6w 2 + z
d2w

dz2 = 2w 3 + zw + α

d2w

dz2 =
1
w

(
dw
dz

)2

− 1
z

dw
dz

+
αw 2 + β

z
+ γw 3 +

δ

w

d2w

dz2 =
1

2w

(
dw
dz

)2

+
3
2
w 3 + 4zw 2 + 2(z2 − α)w +

β

w



Painlevé V and VI

d2w

dz2 =

(
1

2w
+

1
w − 1

)(
dw
dz

)2

−

−1
z

dw
dz

+
γw

z
+

(w − 1)2

z2

(
αw +

β

w

)
δw(w + 1)
w − 1

,

d2w

dz2 =
1
2

(
1
w

+
1

w − 1
+

1
w − z

)
w 2
z −

(
1
z
+

1
z − 1

)
wz+

+
w(w − 1)(w − z)

z2(z − 1)2

[
α + β

z

w 2 + γ
z − 1

(w − 1)2
+ δ

z(z − 1)
(w − z)2

]



Painlevé parameters

Denote z = t and

α := (θ∞ − 1/2)2; β := −θ2
0;

γ := θ2
1; δ := (1/4− θt)2.



Painlevé transcendents - paradigmatic integrable systems

I Reductions of soliton equations (KdV, KP, NLS);

I They admit a Hamiltonian formulation;
I They can be expressed as the isomonodromic deformation of

some linear differential equation with rational coefficients;
I All Painlevés (except for PI ) admit one-parameter family of

solutions (in terms of special functions) and for some special
values of parameteres they have particular rational solutions;

I Recently: PII - has a genuine fully NC analogue
(V. Retakh-V.R.)
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I All Painlevé equations are isomonodromic deformation
equations (Miwa-Jimbo 1980)

dB
dλ
− dA

dz
= [A,B] , (1)

where A = A(λ, z ,w ,w ′), B = B(λ, z ,w ,w ′) ∈ sl2(C)

I This means that the monodromy data of the linear system

dY
dλ

= A(λ, z ,w ,w ′)Y (2)

are locally constant along solutions of the Painlevé equation.
I The monodromy data play the role of initial conditions.
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PVI as isomonodromic deformation
Painlevé sixth equation
I The Painlevé VI equation describes the isomonodromic

deformations of the rank 2 meromorphic connections on P1

with simple poles.

dY
dλ

=

(
A1(z)

λ
+

A2(z)

λ− t
+

A3(z)

λ− 1
,

)
Y , λ ∈ C \ {0, t, 1} (3)

where A1,A2,A3 ∈ sl2(C), A1 + A2 + A3 = −A∞, diagonal.

I Fundamental matrix: Y∞(λ) = (1 + O( 1
λ))λA∞ .

I Monodromy matrices γj(Y∞) = Y∞Mj

I Describes by generators of the fundamental group under the
anti-isomorphism

ρ : π1
(
P1\{0, t, 1,∞}, λ1

)
→ SL2(C).
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I eigen(Mj) = eigen(exp(2πiAj)

I We fix the base point λ1 at infinity and the generators of the
fundamental group to be γ1, γ2, γ3 such that γj encircles only
the pole i once and are oriented in such a way that

M1M2M3M∞ = I, M∞ = exp(2πiA∞). (4)

I Eigenvalues of Aj are (θj ,−θj), j = 0, t, 1,∞.



Let:
Gj := Tr(Mj) = 2 cos(πθj), j = 0, t, 1,∞,

The Riemann-Hilbert correspondence

F(θ0, θt , θ1, θ∞)/G →M(G1,G2,G3,G∞)/SL2(C),

where G is the gauge group, is defined by associating to each
Fuchsian system its monodromy representation class. The
representation spaceM(G1,G2,G3,G∞) is realised as an affine
cubic surface (Jimbo)

x1x2x3 + x2
1 + x2

2 + x2
3 + ω1x1 + ω2x2 + ω3x3 + ω4 = 0, (5)

where:



x1 = Tr (M2M3) , x2 = Tr (M1M3) , x3 = Tr (M1M2) .

and
−ωi := GkGj + GiG∞, i 6= k, j ,

ω∞ = G 2
1 + G 2

2 + G 2
3 + G 2

∞ + G1G2G3G∞ − 4.

Iwasaki proved that the triple (x1, x2, x3) satisfying the cubic
relation (5) provides a set of coordinates on a large open subset

S ⊂M(G1,G2,G3,G∞).

In what follows, we restrict to such open set.



Following Sakai, there are eight Painlevé equations corresponding
to the eight extended Dynkin diagrams:

D̃4, D̃5, D̃6, D̃7, D̃8, Ẽ6, Ẽ7, Ẽ8,

corresponding respectively to PVI, PV, three different cases of PIII,
PIV, PII and PI.
Their monodromy manifolds were studied by several authors, but
were recently presented in a unified way:

D̃4 x1x2x3 + x2
1 + x2

2 + x2
3 + ω1x1 + ω2x2 + ω3x3 + ω4 = 0,

(6)



D̃5 x1x2x3 + x2
1 + x2

2 + ω1x1 + ω2x2 + ω3x3 + ω4 = 0,

D̃6 x1x2x3 + x2
1 + x2

2 + ω1x1 + ω2x2 + ω1 − 1 = 0,

D̃7 x1x2x3 + x2
1 + x2

2 + ω1x1 = 0,

D̃8 x1x2x3 + x2
1 + x2

2 + 1 = 0,

Ẽ6 x1x2x3 + x2
1 + ω1x1 + ω2(x2 + x3) + 1 + ω4 = 0,

Ẽ ∗7 x1x2x3 + x1 + x2 + x3 + ω4 = 0,

Ẽ ∗∗7 x1x2x3 + x1 + ω2x2 + x3 − ω2 + 1 = 0,

Ẽ8 x1x2x3 + x1 + x2 + 1 = 0,

where ω1, . . . , ω4 are some constants related to the parameters
appearing in the Painlevé equations



Confluence of Painlevé equations (Sakai)

PD6
III

!!

// PD7
III

!!

// PD8
III

PVI
// PV

//

>>

  

Pdeg
V

!!

==

PJM
II

// PI

PIV

==

// PFN
II

==



General Affine Cubic

The main object studied in this talk is the affine irreducible cubic
surface Mφ := Spec(C[x1, x2, x3]/〈φ=0〉) where

φ = x1x2x3+ε
(d)
1 x2

1 +ε
(d)
2 x2

2 +ε
(d)
3 x2

3 +ω
(d)
1 x1+ω

(d)
2 x2+ω

(d)
3 x3+ω

(d)
4 = 0,
(7)

According to Saito and Van der Put, the monodromy manifolds
M(d) have all the form of Mφ



Here d is an index running on the list of the extended Dynkin
diagrams D̃4, D̃5, D̃6, D̃7, D̃8, Ẽ6, Ẽ

∗
7 , Ẽ

∗∗
7 , Ẽ8 and the parameters

ε
(d)
i , ω

(d)
i , i = 1, 2, 3 are given by:

ε
(d)
1 =

{
1 for d = D̃4, D̃5, D̃6, D̃7, D̃8, Ẽ6,

0 for d = Ẽ ∗7 , Ẽ
∗∗
7 , Ẽ8,

ε
(d)
2 =

{
1 for d = D̃4, D̃5, D̃6, D̃7, D̃8

0 for d = Ẽ6, Ẽ
∗
7 , Ẽ

∗∗
7 , Ẽ8,

(8)

ε
(d)
3 =

{
1 for d = D̃4,

0 for d = D̃5, D̃6, D̃7, D̃8, Ẽ6, Ẽ
∗
7 , Ẽ

∗∗
7 , Ẽ8.



The coefficients ω(d) are defined by:

ω
(d)
1 = −G (d)

1 G (d)
∞ − ε(d)

1 G
(d)
2 G

(d)
3 ,

ω
(d)
2 = −G (d)

2 G (d)
∞ − ε(d)

2 G
(d)
1 G

(d)
3 ,

ω
(d)
3 = −G (d)

3 G (d)
∞ − ε(d)

3 G
(d)
1 G

(d)
2 , (9)

ω
(d)
4 = ε

(d)
2 ε

(d)
3

(
G

(d)
1

)2
+ ε

(d)
1 ε

(d)
3

(
G

(d)
2

)2
+ ε

(d)
1 ε

(d)
2

(
G

(d)
3

)2
+

(
G (d)
∞

)2
+ G

(d)
1 G

(d)
2 G

(d)
3 G (d)

∞ − 4ε(d)
1 ε

(d)
2 ε

(d)
3 ,



Here G
(d)
1 ,G

(d)
2 ,G

(d)
3 ,G

(d)
∞ are some constants related to the

parameters appearing in the Painlevé equations as follows:

G
(d)
1 =





2 cosπθ0 d = D̃4, D̃5, Ẽ6

e−
iπ(θ0+1)

2 d = Ẽ ∗7
e−iπθ0 d = Ẽ ∗∗7
1 d = D̃7, D̃8, Ẽ8

e
iπ(θ0+θ∞)

2 + e
−iπ(θ0+θ∞)

2 d = D̃6,

G
(d)
2 =





2 cosπθ1 d = D̃4, D̃5,

2 cosπθ∞ d = Ẽ6

e−
iπ(θ0+1)

2 d = Ẽ ∗7
e iπθ0 d = Ẽ ∗∗7
1 d = D̃8, Ẽ8

e
iπ(θ0−θ∞)

2 + e
iπ(−θ0+θ∞)

2 d = D̃6



G
(d)
3 =





2 cosπθt d = D̃4,

1 d = D̃5, D̃7

2 cosπθ∞ d = Ẽ6

e−
iπ(θ0+1)

2 d = Ẽ ∗7
e−iπθ0 d = Ẽ ∗∗7
0 d = D̃6, D̃8, Ẽ8

G (d)
∞ =





2 cosπθ∞ d = D̃4, D̃5, Ẽ6

e
iπ(θ0+1)

2 d = Ẽ ∗7
e iπθ0 d = Ẽ ∗∗7
1 d = D̃8, Ẽ8

e
iπ(θ0+θ∞)

2 d = D̃6

0 d = D̃7



This family of cubics is a variety
Mφ = {(x̄ , ω̄) ∈ C3 × Ω) : φ(x̄ , ω̄) = 0} where
x̄ = (x1, x2, x3), ω̄ = (ω1, ω2, ω3, ω4) and the
"x̄−forgetful"projection π : Mφ → Ω : π(x̄ , ω̄) = ω̄. This projection
defines a family of affine cubics with generically non–singular fibres
π−1(ω̄)
The cubic surface Mφω̄ has a volume form ϑω̄ given by the Poincaré
residue formulae:

ϑω̄ =
dx1 ∧ dx2

(∂φω̄)/(∂x3)
=

dx2 ∧ dx3

(∂φω̄)/(∂x1)
=

dx3 ∧ dx1

(∂φω̄)/(∂x2)
. (10)



The volume form is a holomorphic 2-form on the non-singular part
of Mφω̄ and it has singularities along the singular locus. This form
defines the Poisson brackets on the surface in the usual way as

{x1, x2}ω̄ =
∂φω̄
∂x3

(11)

The other brackets are defined by circular transposition of x1, x2, x3.
For (i , j , k) = (1, 2, 3):

{xi , xj}ω̄ =
∂φω̄
∂xk

= xixj + 2ε(d)
i xk + ω

(d)
i (12)

and the volume form (10) reads as

ϑω̄ =
dxi ∧ dxj

(∂φω̄/∂xk)
=

dxi ∧ dxj

(xixj + 2ε(d)
i xk + ω

(d)
i )

. (13)



Observe that for any φ ∈ C[x1, x2, x3] the following formulae define
a Poisson bracket on C[x1, x2, x3]:

{xi , xi+1} =
∂φ

∂xi+2
, xi+3 = xi , (14)

and φ itself is a central element for this bracket, so that the variety

Mφ := Spec(C[x1, x2, x3]/〈φ=0〉)

inherits the Poisson variety structure [Nambu ∼ 70].
Today I am going to quantize it.



Affine Cubic as it is -1:

I In singularity theory - the universal unfolding of the D4
singularity.

I Oblomkov: the quantisation of the D4 affine cubic surface Mφ

coincides with spherical subalgebra of the generalised rank 1
double affine Hecke algebra H (or Cherednick algebra of type
C1C

ν
1 )

I In algebraic geometry - projective completion:

M
φ̃

:= {(u, v ,w , t) ∈ P3 |x2
1 t + x2

2 t + x2
3 t − x1x2x3+

+ω3x1t
2 + ω2x2t

2 + ω3x3t
2 + ω4t

3 = 0}
is a del Pezzo surface of degree three and differs from it by
three smooth lines at infinity forming a triangle [Oblomkov]
t = 0, x1x2x3 = 0.
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Affine Cubic as it is -2:

I In the Painlevé context the family of surfaces were considered
by S. Cantat et F. Loray and by M. Inaba, K. Iwasaki and
M.Saito.

I PVI (D̃4) cubic with only ω4 6= 0 admits the log-canonical
symplectic structure ϑ̄ = du∧dv

uv under isomorphism
C∗ × C∗/ı→ Mφ by

(u, v)→ (x1 = −(u +
1
u

), x2 = −(v +
1
v

), x3 = −(uv +
1
uv

)

and ı : C∗ → C∗ is the involution ı(u) = 1
u , ı(v) = 1

v .

I The family (7) can be "uniformize"by some analogues of
theta-functions related to toric mirror data on log-Calabi-Yau
surfaces (M. Gross, P. Hacking and S.Keel (see Example
5.12 of "Mirror symmetry for log-Calabi-Yau varieties I,
arXiv:1106.4977).
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Basic ideas

I The character variety of a Riemann sphere with 4 holes
Hom(π1(P1 \ {0, t, 1,∞}); SL2(C))/SL2(C) is the
monodromy cubic of the Painlevé VI (Goldman-Toledo).

I The confluent Painlevé monodromy manifolds are "decorated
character varieties
(Chekhov-Mazzocco -R.2015).

I The real slice of the SL2(C) character variety is the
Teichmüller space.

I The shear coordinates on the Teichmüller space can be
complexified) ⇒ coordinate description for the character
variety.

I To visualize the confluence and the "decoration"we shall
introduce two moves correspond to certain asymptotics in the
(complexified) shear coordinates.

I Start from a sphere with 4 holes.



Basic ideas

I The character variety of a Riemann sphere with 4 holes
Hom(π1(P1 \ {0, t, 1,∞}); SL2(C))/SL2(C) is the
monodromy cubic of the Painlevé VI (Goldman-Toledo).
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Poincaré uniformization

I Poincaré uniformization: Σ0,4 ∼ H/∆0,4

I The Fuchsian group ∆0,4 =< γ1, γ2, γ3, >, γj ∈ PSL2(R).

I The Teichmüller space
T0,4 = Hom(π1(Σ0,4,PSL2(R))/PSL2(R)

I Closed geodesics on Σ0,4 ⇐⇒ conjug. classes in π1(Σ0,4)

I Closed paths in the fat graph Γ0,4 ⇐⇒ conjug. classes in ∆0,4
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I Poincaré uniformization: Σ0,4 ∼ H/∆0,4

I The Fuchsian group ∆0,4 =< γ1, γ2, γ3, >, γj ∈ PSL2(R).

I The Teichmüller space
T0,4 = Hom(π1(Σ0,4,PSL2(R))/PSL2(R)

I Closed geodesics on Σ0,4 ⇐⇒ conjug. classes in π1(Σ0,4)

I Closed paths in the fat graph Γ0,4 ⇐⇒ conjug. classes in ∆0,4
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Shear coordinates on 4-holed sphere
In the D4 case the parameterisation of the cubic in Thurston shear
coordinates on the fat-graph of a 4–holed sphere was found by
Chekhov-Mazzocco:

x1 = −e s̃2+s̃3 − e−s̃2−s̃3 − e−s̃2+s̃3 − G2e
s̃3 − G3e

−s̃2

x2 = −e s̃3+s̃1 − e−s̃3−s̃1 − e−s̃3+s̃1 − G3e
s̃1 − G1e

−s̃3 ,

x3 = −e s̃1+s̃2 − e−s̃1−s̃2 − e−s̃1+s̃2−

−G1e
s̃2 − G2e

−s̃1

where

Gi = e
pi
2 + e−

pi
2 , i = 1, 2, 3,G∞ = e s̃1+s̃2+s̃3 + e−s̃1−s̃2−s̃3 ,

and s̃i are actually the shifted shear coordinates s̃i = si + pi
2 ,

i = 1, 2, 3.



The geodesic length functions, which are traces of hyperbolic
elements in the Fuchsian group ∆0,4 are obtained by decomposing
each hyperbolic matrix γ ∈ ∆0,4 into a product of the so–called
right, left and edge matrices:

R :=

(
1 1
−1 0

)
, L :=

(
0 1
−1 1

)
, Xsi :=

(
0 − exp

(
si
2

)

exp
(
− si

2

)
0

)
.

(15)
In this setting our x1, x2, x3 are the geodesic lengths of three
geodesics which go around two holes without self–intersections, for
example x3 corresponds to the dashed geodesic in Fig.1.



s1
p1

s2

p2

s3
p3

Figure: The fat graph of the 4 holed Riemann sphere. The dashed
geodesic corresponds to x3. The corresponding hyperbolic element
γ1;2 = Tr(Xs1LXp1LXs1RXs2LXp2LXs2L)



V. Fock: The fat graph associated to a Riemann surface Σg ,n of
genus g and with n holes is a connected three–valent graph
drawn without self-intersections on Σg ,n with a prescribed cyclic
ordering of labelled edges entering each vertex; it must be a
maximal graph in the sense that its complement on the
Riemann surface is a set of disjoint polygons (faces), each
polygon containing exactly one hole (and becoming simply
connected after gluing this hole).

Gγ12 = Tr(γ12) = 2 cosh(lγ12/2)

where lγ12 is actual length of the closed geodesic on Σ0,4



s3
p3

s1
p1

s2

p2

Figure: The fat graph of the 4 holed Riemann sphere. The geodetic
corresponding to x1 is obtained by going along first the green loop then
the red one.



The confluence from the cubic associated to PVI to the one
associated to PV is realised by

p3 → p3 − 2 log[ε],

in the limit ε→ 0. We obtain the following shear coordinate
description for the PV cubic:

x1 = −es2+s3+
p2
2 +

p3
2 − G3e

s2+
p2
2 ,

x2 = −es3+s1+
p3
2 +

p1
2 − es3−s1+

p3
2 −

p1
2 − G3e

−s1−
p1
2 − G1e

s3+
p3
2 ,

x3 = −es1+s2+
p1
2 +

p2
2 − e−s1−s2−

p1
2 −

p2
2 − es1−s2+

p1
2 −

p2
2 − G1e

−s2−
p2
2 − G2e

s1+
p1
2 ,

(16)

where

Gi = e
pi
2 +e−

pi
2 , i = 1, 2, G3 = e

p3
2 , G∞ = es1+s2+s3+

p1
2 +

p2
2 +

p3
2 .



These coordinates satisfy the following cubic relation:

x1x2x3 + x2
1 + x2

2 − (G1G∞ + G2G3)x1 − (G2G∞ + G1G3)x2 −
−G3G∞x3 + G 2

∞ + G 2
3 + G1G2G3G∞ = 0. (17)

Note that the parameter p3 is now redundant, we can eliminate it
by rescaling. To obtain the correct PV- cubic, we need to pick
p3 = −p1 − p2 − 2s1 − 2s2 − 2s3 so that G∞ = 1.



s3
∞

s1
p1

s2

p2

Figure: The fat graph corresponding to PV.



Geometrically speaking, sending the perimeter p3 to infinity means
that we are performing a chewing-gum move:
two holes, one of perimeter p3 and the other of perimeter
s1 + s2 + s3 + p1

2 + p2
2 + p3

2 , become infinite, but the area between
them remains finite.
This is leading to a Riemann sphere with three holes and two cusps
on one of them. In terms of the fat-graph, this is represented by
Figure 2.
The geodesic x3 corresponds to the closed loop obtained going
around p1 and p2 (green and red loops), while x1 and x2 are
"asymptotic geodesics"starting at one cusp, going arond p1 and p2
respectively, and coming back to the other cusp.



Figure: The process of confluence of two holes on the Riemann sphere
with four holes. Chewing-gum move: hook two holes together and
stretch to infinity by keeping the area between them finite (see Fig.). As
a result we obtain a Riemann sphere with one less hole, but with two new
cusps on the boundary of this hole. The red geodesic line which was
initially closed becomes infinite, therefore two horocycles (the green
dashed circles) must be introduced in order to measure its length.



Theorem
(Chekhov-Mazzocco-R.) The decorated character variety of a
Riemann sphere with 3 holes, one of which with two cusps, is
given by the monodromy manifold of the Painlevé V equation:

x1x2x3 + x2
1 + x2

2 + ω1x1 + ω2x2 + ω3x3 = ω4.



The character variety of a Riemann sphere with three holes and two
cusps on one boundary is 7-dimensional (rather than 2-dimensional
like in PVI case). The fat-graph admits a complete cusped
lamination as displayed in the figure below. A full set of coordinates
on the character variety is given by the five elements in the
lamination and the two parameters G1 and G2 which determine the
perimeter of the two non-cusped holes.

             

Рис.: PV new coordinatization



Notice that there are two shear coordinates associated to the two
cusps, they are denoted by k1 and k2, their sum corresponds to
what we call p3 above.
These shear coordinates do not commute with the other ones, they
satisfy the following relations:

{s3, k1} = {k1, k2} = {k2, s3} = 1.

As a consequence in the character variety, the elements G3 and G∞
are not Casimirs.
In terms of shear coordinates, the elements in the lamination are
expressed as follows:

a = ek1+s1+2s2+s3+
p1
2 +p2 , b = ek1+s2+s3+

p2
2 , e = e

k1
2 +

k2
2 ,

c = ek1+s1+s2+s3+
p1
2 +

p2
2 , d = e

k1
2 +

k2
2 +s1+s2+s3+

p1
2 +

p2
2 . (18)



They satisfy the following Poisson relations:

{a, b} = ab, {a, c} = 0, {a, d} = −1
2
ad , {a, e} =

1
2
ae,(19)

{b, c} = 0, {b, d} = −1
2
bd , {b, e} =

1
2
be, (20)

{c , d} = −1
2
cd , {c , e} =

1
2
ce, {d , e} = 0, (21)

so that the element G3G∞ = de is a Casimir.



The symplectic leaves are determined by the values of the three
Casimirs G1,G2 and G3G∞.
On each symplectic leaf, the PV monodromy manifold (17) is the
subspace defined by those functions of a, b, c (and of the Casimir
values G1, G2, G3G∞) which commute with G3 = e. To see this,
we can use relations (18) to determine the exponentiated shear
coordinates in terms of a, b, c , d , e and then deduce he expressions
of x1, x2, x3 in terms of the lamination. We obtain the following
expressions:

x1 = −e a
c
− d

b

c
, x2 = −e b

c
− G1d

b

a
− d

b2

ac
− d

c

a
,(22)

x3 = −G2
c

b
− G1

c

a
− b

a
− c2

ab
− a

b
, (23)

which automatically satisfy (17).



Due to the Poisson relations (19) the functions that commute with
e are exactly the functions of a

b ,
b
c ,

c
a . Such functions may depend

on the Casimir values G1, G2 and G3G∞ and e itself, so that
d = G∞ becomes a parameter now. With this in mind, it is easy to
prove that x1, x2, x3 are algebraically independent functions of
a
b ,

b
c ,

c
a so that x1, x2, x3 form a basis in the space of functions

which commute with e.

Remark
It is worth reminding that the exponentials of the shear coordinates
satisfy the log-canonical Poisson bracket.



Cusps removal:
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on the cubics by simple operations.

For example, we can produce the PV eD5 cubic by considering the PVI eD4 one
and rescaling x1 ! x1

� , x2 ! x2

� , !1 ! �1

� , !2 ! �2

� , !3 ! �3

�2 and !4 ! �4

�2 and
then keeping the dominant term as ✏! 0. This simple idea allows to us to extend
the parameterisation of the PVI cubic in terms of flat coordinates obtained in [3] to
all other Painlevé equations. Geometrically speaking, the confluence scheme on the
Painlevé cubics can be explained by our chewing-gum and cusp-removal operations.

Following the Fock–Goncharov philosophy, we also address the problem of whether
there is some cluster algebra structure hidden in each cubic. We prove that indeed

for eD4, eD5, eD6 and eE6 there is a generalised cluster algebra structure [5]. In partic-
ular this implies that the procedure of analytic continuation of the solutions to the
sixth Painlevé equation satisfies the Laurent phenomenon as explained in Section
4.

Interestingly we also produce a quantum confluence procedure in such a way
that quantisation and confluence commute.

This paper is organised as follows: in Section 2, we recall the link between the
parameters !1, . . . , !4 and the Painlevé parameters �, �, � and �. In Section 4 we
explain the generalised cluster algebra structure appearing in the case of PVI, PV,
PIII and PIV. In Section 3 we present the flat coordinates for each cubic. In Section
5 we present the quantisation and the quantum confluence.

Acknowledgements. The authors are grateful to P. Clarkson, M. van der Put, V.
Sokolov and T. Sutherland for helpful discussions. This research was supported by
the EPSRC Research Grant EP/J007234/1, by the Hausdor� Institute, by ANR
”DIADEMS”, by RFBR-12-01-00525-a, MPIM (Bonn) and SISSA (Trieste).

2. The Painlevé the monodromy manifolds

According to [26], the monodromy manifolds M(d) have all the form

(2.1) x1x2x3 + ✏
(d)
1 x2

1 + ✏
(d)
2 x2

2 + ✏
(d)
3 x2

3 + !
(d)
1 x1 + !

(d)
2 x2 + !

(d)
3 x3 + !

(d)
4 = 0,

where d is an index running on the list of the extended Dynkin diagrams eD4, eD5, eD6,
eD7, eD8, eE6, eE�

7 , eE7, eE8 and the parameters ✏
(d)
i , !

(d)
i , i = 1, 2, 3 are given by:

✏
(d)
1 =

�
1 for d = eD4, eD5, eD6, eD�

6 ,
eD7, eD8, eE6, eE�

7 ,

0 for d = eE7, eE8,

✏
(d)
2 =

�
1 for d = eD4, eD5, eD6, eD�

6 ,
eD7, eD8

0 for d = eE6, eE�
7 , eE7, eE8,

(2.2)

 

Marta Mazzocco Topology of Stokes phenomenaРис.: Sakai confluence and decoration



Quantization

To produce the quantum Painlevé cubics, we introduce the
Hermitian operators S1,S2, S3 subject to the commutation
inherited from the Poisson bracket of s̃i :

[Si ,Si+1] = iπ~{s̃i , s̃i+1} = iπ~, i = 1, 2, 3, i + 3 ≡ i .

Observe that thanks to this fact, the commutators [Si ,Sj ] are
always numbers and therefore we have

exp (aSi ) exp (bSj) = exp
(
aSi + bSi +

ab

2
[Si ,Sj ]

)
,

for any two constants a, b. Therefore we have the Weyl ordering:

eS1+S2 = q
1
2 eS1eS2 = q−

1
2 eS2eS1 , q ≡ e−iπ~.



Theorem
(L. Chekhov-M. Mazzocco-V.R)
Denote by X1,X2,X3 the quantum Hermitian operators
corresponding to x1, x2, x3 as above. The quantum commutation
relations are:

q−
1
2XiXi+1−q

1
2Xi+1Xi =

(
1
q
− q

)
ε

(d)
k Xk−(q−

1
2 −q 1

2 )ω
(d)
k (24)

where ε(d)
i and ω(d)

i are the same as in the classical case. The
quantum operators satisfy the following quantum cubic relations:

q
1
2X3X1X2 − qε

(d)
3 X 2

3 − q−1ε
(d)
1 X 2

1 − qε
(d)
2 X 2

2 +

q
1
2 ε

(d)
3 ω3X3 + q−

1
2ω

(d)
1 X1 + q

1
2ω

(d)
2 X2 − ω(d)

4 = 0.



Remark
The Hermitian operators X1,X2,X3 corresponding to x1, x2, x3 are
introduced as follows: consider the classical expressions for x1, x2, x3
in terms of s1, s2, s3 and p1, p2, p3. Write each product of
exponential terms as the exponential of the sum of the exponents
and replace those exponents by their quantum version. For example
(the case D̃5): the classical x1 is

x1 = −es2+s3 − e−(s̃2+s̃3) − G2e
s̃3 − G3e

−s̃2 ,

and its quantum version is defined as

X1 = −eS2 − (ep2/2 + e−p2/2)eS3 − eS3−S2 − eS3+S2 =

−eS2 − (ep2/2 + e−p2/2)eS3 − q−1/2e−S2eS3 − q1/2eS2eS3 .



Remark
I Our theorem and close results of Marta Mazzocco show that

we can interpret the Cherednik algebra and their close
"relatives"as a quantisation of the (group algebra of the)
monodromy group of the Painlevé equations. Here q := e−iπ~

and qn 6= 1.

I The Askey-Wilson AW (3) (or Zhedanov algebra) can be
obtained from (24) for a special constant choice after a proper
"rescaling".



Remark
I Our theorem and close results of Marta Mazzocco show that

we can interpret the Cherednik algebra and their close
"relatives"as a quantisation of the (group algebra of the)
monodromy group of the Painlevé equations. Here q := e−iπ~

and qn 6= 1.
I The Askey-Wilson AW (3) (or Zhedanov algebra) can be

obtained from (24) for a special constant choice after a proper
"rescaling".



"Physical Motivations"

I Standard ModelSU(3)× SU(2)× U(1) Gauge Theory

I SUSY desired phenomena are inherited from String Theory
I Superstring Theory: R1,910D = 1 + 3 + 6 Dirichlet p− branes:

p + 1−subvarieties in R1,9 on which open strings can end;
I D−brane world: live on D3−brane ⊥ 6D−affine varietyM.

1 + 3D−world-volume with SUSY YM and product gauge
group.



"Physical Motivations"

I Standard ModelSU(3)× SU(2)× U(1) Gauge Theory
I SUSY desired phenomena are inherited from String Theory

I Superstring Theory: R1,910D = 1 + 3 + 6 Dirichlet p− branes:
p + 1−subvarieties in R1,9 on which open strings can end;

I D−brane world: live on D3−brane ⊥ 6D−affine varietyM.
1 + 3D−world-volume with SUSY YM and product gauge
group.



"Physical Motivations"

I Standard ModelSU(3)× SU(2)× U(1) Gauge Theory
I SUSY desired phenomena are inherited from String Theory
I Superstring Theory: R1,910D = 1 + 3 + 6 Dirichlet p− branes:

p + 1−subvarieties in R1,9 on which open strings can end;

I D−brane world: live on D3−brane ⊥ 6D−affine varietyM.
1 + 3D−world-volume with SUSY YM and product gauge
group.



"Physical Motivations"

I Standard ModelSU(3)× SU(2)× U(1) Gauge Theory
I SUSY desired phenomena are inherited from String Theory
I Superstring Theory: R1,910D = 1 + 3 + 6 Dirichlet p− branes:

p + 1−subvarieties in R1,9 on which open strings can end;
I D−brane world: live on D3−brane ⊥ 6D−affine varietyM.

1 + 3D−world-volume with SUSY YM and product gauge
group.



D−brane algebras and superpotentials. Basic principles:

I One can associate an algebra to the category of D−branes at
a singular point p. In every known example, the collection of
possible D−branes at p can be described as a collection of
QFT with the same Lagrangian for each of the theories.

I More precisely, one does specify the "matter representation"(as
a collection of adjoint and bifundamental fields for the gauge
groups Gi ) and one specifies a superpotential W− the trace of
a polynomial in the matter fields.

I To such data one can assign a quiver whose vertices label the
groups Gi and whose directed edges specify the bifundamental
and adjoint fields in the matter representation.
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Quiver Theory

I Action
∫

d4x [

∫
d4θΨ†i e

V Ψi+(
1

4g2

∫
d2θTrWαWα+

∫
d2θW(—ψ) + h.c.)]

W = superpotential;
V (φi ; φ̄i ) =

∑
i | ∂W∂φi |

2 +g2

4 (
∑

i qi | φi |2)2

I Encode in a Quiver:
k nodes ⇐⇒ Vn1 , . . .Vnk ⇐⇒ ∏k

j=1 U(nj) gauge group;
Each arrow i → j ⇐⇒ bifundamental fields Xij of
U(ni )× U(nj);
Each loop i → i ⇐⇒ adjoint fields φi of U(ni );
Superpotential W ⇐⇒ linear combination of cycles:

∑
i ci

gauge invariant operators;
Relations ⇐⇒ jacobian of W (φi ,Xij).
Vacuum: V (φi ; φ̄i ) = 0⇒ ∂W

∂φi
= 0;

∑
i qi | φi |2= 0.
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Superpotential algebra

I From the quiver, we directly get the path algebra, which is the
algebra of all paths on the quiver (i.e., all ordered monomials
in matter fields).

I A universal feature of this family of theories is the relations in
the path algebra determined by what are called "F−term
constraints
in physics: ∂W∂φi = 0

I These are the algebra relations dictated by ∂W
∂Xj

. So, given a
field theory description of the family of D-branes in the form
above, the D-brane algebra is

A = path algebra of quiver/(
∂W

∂Xj
).

I This is called a superpotential algebra, which is a Calabi - Yau
algebra.
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Elementary example
I First example, we consider the case in which P is a smooth

point. In physics language, the conformal fields theory is the
N = 4 SUSY Yang-Mills theory, written in N = 1 language.
The N = 4 gauge multiplet decomposes as an N = 1 gauge
multiplet plus three complex scalar fields X ,Y ,Z each
transforming in the adjoint representation of the group.

I The superpotential is

W = tr(X (YZ − ZY )).

I The F− term constraint in this case tells us

YZ = YZ , XZ = ZX and XY = YX .

I Thus, we find
A = C[X ,Y ,Z ],

the (commutative) polynomial algebra in three variables.
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Example 2. Sklyanin algebra-1

I The most famous example of 3-Calabi-Yau algebra is the
following graded associative algebra associated with an elliptic
curve E (possibly degenerated).

I This algebra denotes by Q3(E , a, b, c) where (a, b, c) ∈ C3

such that Q3(E , a, b, c) = C < X ,Y ,Z > /JW with JW =<
aYZ + bZY + cX 2, aZX + bXZ + cY 2, aXY + bYX + cZ 2 >

I The ideal JW can be written as a non-commutative jacobian
ideal JW =< ∂X , ∂Y , ∂Z >∈ C < X ,Y ,Z > for superpotential

W = aXYZ + bYXZ + c(X 3 + Y 3 + Z 3)
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Example 2. Sklyanin algebra-2

I Here we consider W as a cyclic word of three variables
X ,Y ,Z , i.e. like an element of the quotient
A\ := C < X ,Y ,Z > /[C < X ,Y ,Z >,C < X ,Y ,Z >] with

I cyclic derivatives ∂X , ∂Y , ∂Z where

∂j : A\ → C < X ,Y ,Z >, j = X ,Y ,Z

defines for any cyclic word ϕ ∈ A\ by

∂jϕ :=
∑

k|ik=j

Xik+1Xik+2...XiN ...Xi1Xi2 ..Xik−1 ∈ C < X ,Y ,Z >
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Example 2. Sklyanin algebra-3

Etingof-Ginzburg:
I One can identify the Sklyanin algebra Q3(E , 1,−q, c3 ) with

the flat deformation of the Poisson algebra
(C[x , y , z ], {−,−}φ) as above with
φ = 1

3(x3 + y3 + z3) + τxyz and
W = XYZ − qYXZ + c

3 (X 3 + Y 3 + Z 3).

I The coordinate ring Bφ = C[x , y , z ]/φC[x , y , z ] of the affine
surface φ = 0 inherits a Poisson algebra structure.

I There is a degree 3 central element Φ ∈ Z (Q3(E , 1,−q, c3 ))
and the quotient of the Sklyanin 3-Calabi-Yau algebra by
two-sided ideal < Φ > is a flat deformation of the Poisson
algebra Bφ.
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Superpotentials of marginal and relevant deformations-1

I There is a "physical interpretation"of the Sklyanin
superpotential (Berenstein-Leigh) as a marginal deformation
of the superpotential from the Example 1:

W + Wmarg =

= gtr(X[Y,Z]) + tr(aXYZ+bYXZ+
c
3

(X3 +Y3 +Z3)) ∈ A\.

I The structure of the vacua of D-brane gauge theories relates
to the Non-Commutative Geometry also via another
superpotentials (relevant deformations) having the form

Wrel = tr(
m1

2
X2 +

m2

2
(Y2 + Z2) + e1X + e2Y + e3Z)
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Superpotentials of marginal and relevant deformations-2

I The "vacua"of the theory with Wtot = W + Wmarg + Wtel

superpotential corresponds to solutions of

∂iWtot = 0, i = X ,Y ,Z .

I The defining equations (for a = 1, b = −q):




X1X2 − qX2X1 = −cX 2
3 −m2X3 − e3

X2X3 − qX3X2 = −cX 2
1 −m1X1 − e1

X3X1 − qX1X3 = −cX 2
2 −m2X2 − e2

(25)

This relations contain our (24) (again, after a special constant
choice and a "rescaling").
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Etingof-Ginzburg ideology-1:

I Let M = C3 considering as the simplest Calabi-Yau manifold
and φ ∈ A = C[x1, x2, x3] defines the Poisson bracket of
jacobian type as above.

I Mφ : φ(x1, x2, x3) = 0 is an affine surface in M and the
coordinate ring Bφ := C[Mφ] = A/(φ) is a commutative
Poisson algebra with the structure induced by φ

I Let
φτ,ν = τx1x2x3 + ν

3 (x3
1 +x3

2 +x3
3 ) +P(x1) +Q(x2) +R(x3) = 0

be the family of affine surfaces containing the E6 del Pezzo.
Here degP, degQ and degQ < 3.
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Etingof-Ginzburg ideology-2:

I Let A = C < X1,X2,X3 > and A\ be defined as above and

Φq,ν
P,Q,R = X1X2X3−qX2X1X3+ν(X 3

1 +X 3
2 +X 3

3 )+P(X1)+Q(X2)+R(X3) ∈ A\
(26)

I U(Φq,ν
P,Q,R) is a filtered algebra defined by three inhomogeneous

"jacobian"relations:

XiXj − qXjXi = νX 2
k +

dP(Q,R)

dXk
, (i , j , k) = (1, 2, 3) (27)

I The superpotential Φq,ν
P,Q,R = Φq,ν + ΦP,Q,R where

Φq,ν = X1X2X3 − qX2X1X3 + ν(X 3
1 + X 3

2 + X 3
3 ) ∈ A

(3)
\ and

ΦP,Q,R ∈ A
(≤2)
\ is a 3-CY-superpotential (for generic

parameters)
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Etingof-Ginzburg ideology-3:

Aφ

��

fl. def. // U(Φq,ν
P,Q,R)

��
Bφ // B(Φq,ν

P,Q,R ,Ψ) = U(Φq,ν
P,Q,R)/(Ψ).

In our case Φq,0
P,Q,R := X1X2X3 − qX2X1X3

Ψq,ε,ω = X1X2X3−q2X2X1X3 + ε
(d)
1

q − 1√
q

X 2
1 + ε

(d)
2 q3/2(q−1)X 2

2 +

(28)

ε
(d)
3

q3 − 1√
q

X 2
3 −−ω(d)

1 (q − 1)X1 − ω(d)
2 q(q − 1)X2 − ω(d)

3 (q2 − 1)X3,



Links and open problems

I There are various links to Sklyanin algebras and their
degenerations;

I Toric character varieties, their "uniformization"("toric
theta-functions");

I Deformations of cubic divisors.
I Interesting and intriguing problems are related to a

construction of NC cubic surfaces and their relations to NC
cluster algebras.
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