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Let x1,...,zxy be non-commutative generators
of the free associative algebra A. We consider
ODE systems of the form

dCC,L'

%:Fz‘(x), X = (:1:1,...,33]\]), (1)

where F; are (non-commutative) polynomials.

The (infinitesimal) symmetry for (1) is a system

= G0, (2)

compatible with (1).

Definition. A system (1) is called integrable if
it possesses infinitely many symmetries.

Example 1. Let N =2, 1 = u,v = x5. The
following system

U = v2, v = u?

IS integrable.



Example 2. Consider the following system

up = ulv — vu, vy = 0. (3)

Many important multi—component integrable equa-
tions on associative algebras can be obtained as
reductions of (3).

For instance, if u is n x n matrix such that ul =
—u, and v is a constant diagonal matrix, then
(3) is equivalent to the n-dimensional Euler top.
The integrability of this model was established
by S.V. Manakov in 1976.



Consider the cyclic reduction

[0 wg O O - O )
0 0 up O - O
w= | . . . |
0 0 0 0 - uy_1
\uy O 0 O 0 )
[0 0 O 0 Jy )
J. 0 0 0 O
v=| 0 Jo O o 0 |,

\ O 0 O - Jyv_1 O )
where u; and J, are matrices or even generators

of a bigger free algebra. Then (3) is equivalent
to the non-abelian Volterra equation

d
2k = WUk b1 — Jeo1ug-aug, k€ L.
If we assume N = 3, J; = Jo = J3 = Id and

uz = —uj1 — u> then the latter system vyields

utzuz—l—uv—l—’uu, vt=—v2—uv—vu.



Example 3. Let N = 3. Consider the system

xt = [z, bra+axb+xba+bax], a =0, b =0.

On the free associative algebra this system is
non-integrable. However it is integrable on the
associative algebra with identities a2 = b2 = 1.

T he system admits the following skew-symmetric
reduction

which leads to a non-abelian Steklov top (Odesskii-
VS).



Hamiltonian structures.

Denote by O the associative algebra of operators
on A generated by L., and R, where

La(y) = ay, Ra(y) = ya

are the operators of left and right multiplication
by a. We call © the algebra of local operators.

It follows from the associativity of algebra A that
Roly = LyRa, Lgp = Laly, Rgp = Rplia,

Loa+8p = aLa + BLy, Roa+p0 = aRa + SR,



Definition 1 The traces for elements of A are
defined as the corresponding elements of of quo-
tient space A/K, where K is the vector space
spanned by all commutators in A. If a — b € K,
we write a ~ b.

Definition 2 Let a(x) € A. Then grad(tra) is
the vector uniquely defined by:

d
d—a(X + eX)|e=0 ~ < &, grada(x)) >,
€

where < (p1,...,pN),(q1,-..,qn) >=p1g1+-- -+
PNAN -

Ifa~b, (or,thesame, tra =trb ), then grada =
gradb.



Definition 3 We shall call © € O ® gl a local
Hamiltonian operator, if the Poisson bracket

{a,b} =< grada, ©(gradb) >, a,be A

satisfies conditions
{a,b} + {b,a} ~ 0,
{a7 {b7 C}} + {b7 {C7 a}} + {C> {a7 b}} ~ 0

for any elements a,b,c € A.

We call such bracket non-abelian Poisson bracket.



Example 2 (continuation). The system (3) can
be written in the Hamiltonian form

ur = ©(grad H),

where © = LyRy—LyRy, and H = 3tru?. Indeed,
grad,H = v and u; = uuv — vuu.

General Hamiltonian equation on A has the form

x; = ©grad(tr H(x)),

where H is a Hamiltonian of the equation, ©
iIs a Hamiltonian operator. We study the local

Hamiltonian operators, i.e. assume that © ¢
O@glN



Proposition. Any linear non-abelian Poisson
bracket is given by the Hamiltonian operator

— b?jLCUp - bgz'pr’

where bfj are structural constant of an associa-
tive algebra.

If o are m X m-matrices then we can extend the
linear non-abelian Poisson bracket to the matrix
entries in the following way. We have

. -/ ./
z! = tr(ejza), azg,ﬁ = tr(e;-,:cﬁ),

Y

where eg- stand for the matrix unities. We put

. ./ . ./
{x‘g,a, :Izg,ﬁ} = tr(ez@a’ﬁ(e;/)).
Using the formula for the Hamiltonian operator,

we find

{xj w,ﬁ}—mﬁ]&? b, 57

1, B, il v



Consider quadratic non-abelian Poisson brack-
ets.

Proposition. Any quadratic non-abelian Pois-
son bracket is given by the Hamiltonian operator

@Z ] — CL ngpLajq — CL Rprgjq + Cp-quprq,

where p,q,i,7 = 1,...,N. The constants aqu and
cf]q satisfy identities

C’Pq -
]’L’
up vw vp wu wp uv -
-+ CikCpi —+ Cp. = 0,
pu — p wu
a; ; akp Qg Api s
pu_vw _ UDP uw vw U
CL a’pk = CL,L] Ckp zp C?
and
up _ vw __ p’w uv vw _PU
i Okp — Q45 Cpk + Cpj Cki -



In the matrix case the extension to the matrix
entries is given by

. ., .
J J - J k
1T, 00 Ty gt = € ,59” ] @ s+al b, 50— aliorh ] 50

Under change of basis x; — gga:j the constants
are transformed in a standard way:

M 2RSS, bl gRglhEL T,
(4)
Here gjhk = §¥. Moreover, the system of identi-
ties admlts the following discrete involution:

kl kl kl Lk
Cij = Cjis Qi3 — Qgq- (5)

In the matrix case the involution corresponds to
the transposition z; — x}. Brackets related by
(4),(5) are called equivalent.



Let V be a linear space with a basis v;, ©+ =
1,...,N. Define linear operators C, A on the

space V® V by

Cv; ® vj = c%qvp Rug, AviQuv; = aquvp ® vg.

Then the identities can be rewritten in the fol-
lowing form:

c12 = o2l 230124 831023 4 12081 — ¢
A12431 — 431412
523418412 — 412523 _ 23412
432412 — 13 412 _ 43213

Here all operators act in VeV ® V, by o we
mean transposition of :-th and j-th component
of the tensor product and AY, C% mean opera-
tors A, C acting in the product of the -th and

7-th components.



A vector A = (Aq1,...,A\n) is said to be admissible
if for any <,

(agi — aly + ;) ApAg = 0.
For any admissible vector the argument shift
x; — x; + N\Id yields a linear Poisson bracket
with

) = (aff 4+ o +

compatible with the quadratic one.



Classification in the case N = 2.

Theorem. Let N = 2. Then the following Cases
1-5 form a complete list of non-abelian quadratic
Poisson brackets up to equivalence and propor-
tionality.

We present non-zero components of the tensors
a and c only.

Case 1. ci5 =1, ¢332 = —1;
Case 2. c¢f1 =1, c¢i3 = -1, a3%2 = aj5 = —1;
Case 3. ¢35 =1, ¢33 = —1, ai = a37 = 1;

22 _
Case 4. a77 = 1.

Case 5. c¢f1 =1, ¢i2 = 1.



The matrix Case 1 admits the following descrip-
tion.

Let G = GL,(R) and TG ~ gxG = {(X,Y)|detY #
0}. Define the following 2-form:

Q:=trdX Ad(Y 1),

where the matrix differential defines as dX =
||dz;;|| and the wedge product combines with the
matrix one. The matrix of €2 is written as:

—2( O S L
A (—S@)’ A = detY # 0,
where the entries of S are monomials ypqyrs.

The form €2 defines a Poisson structure on R2”2
with coordinates z;;,yg;. The Poisson tensor Tl
has the matrix

2 O —s-1
(&5

Remarkably, the entries of 'l are quadratic mono-
mials in Yij and the Poisson bracket is equivalent
to the bracket from Case 1.



In the matrix Case 2 the Poisson structure is
also non-degenerate. We don't know any de-
scription similar to the above.

In the matrix Case 4 the linear Casimir func-
tions are: trzy and :p;Q for all ¢, 4. This Poisson
structure is trivial in the following sense. If we
fix x» = C, then the dynamics of uw = x1 has the

form

W _ e H),
dt

where H is a non-commutative polynomial in
u, C.

For the matrix Case 5 the linear Casimir func-
tions are x;2 for all 4,5. This bracket defines
the Poisson structure for the non-abelian Euler-
Manakov top.



Consider Case 3. The Casimir functions are:

tra:’ﬁ, tr:clwg, k=0,1,...

The simplest integrable non-abelian ODE with
Poisson bracket Case 3 has the form

U = uVuU — u2fu, v = v2u — VU,

where u = z1,v = 2. The Hamiltonian is Stru?.

The reduction v = Cv gives rise to
v = v2Cv — vCv2.

The cyclic reduction of the latter equation yields
the non-abelian modified Volterra equation.



We show that in the matrix case our quadratic
Poisson bracket is equivalent to a pencil of com-
patible linear Poisson brackets.

Suppose that
o> =TANT 1, z1=TYT 1

where Y is a generic matrix, A = diag(\1, ..., A\m),
where \; # A; and A; = 0, and T is a generic
invertible matrix with ¢ ; = 1.

Consider y; ; and t; 5,4 > 1 as coordinates on
the corresponding (2m? — m)-dimensional Pois-
son submanifold. Then in this coordinates the
restriction of the initial quadratic Poisson bracket

{, } has the form

{7} — Z >‘i{7}ia
1=1

where {, };, are some linear Poisson brackets.



Describe the structure of the Lie algebra G cor-
responding to the pencil. It turns out that

Gg=YaT,

where [V, V] C Y, [V,T] C T, [T,7] = {0}. Sub-
algebra Y of dimension m? is generated by y;;
and Y-module 7 of dimension m(m — 1) is gen-
erated by tij, 1> 1.

Agebra Y is a trivial central extension by y1 1, ..., ym,m
of algebra Z spanned by z; ; = y; ; — y; ;, Where

17+ 7.
The radical of Z is spanned by r;, = Zj#i )\izﬂ
] )

The centralizer S of rq is isomorphic to gli(m —
1) with 1 being the center. The isomorphism
between S and Mat(m — 1) is given by

1

e; — Y(Zj+1,1 —2j41,i41) i,j =1,..,m—1,
J

where 2, ;, = 0 for any k. Here ¢! are the matrix
unities.



The radical of Z is the direct sum of two com-
mutative S-modules of dimensions m — 1 and
1. The first one is spanned by v; = r; — r1.
The second is generated by r1. The commu-
tator relations between the modules is given by

[r1,v;] = v;.

The module 7 is a direct sum of n-dimensional
submodules 7; spanned by t;, ¢ > 1. The com-
mutator relations are

[i > tea] = At s — ti 5)-



