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Introduction

In 1975, Robert Roussarie studied a special class of vector fields

ẋ = v , ẏ = w , żi = aiv + biw , i = 1, . . . , n, (1)

where x ∈ R1, y ∈ R1 and z = (z1, . . . , zn) ∈ Rn.
Here v ,w and ai , bi are C∞-smooth functions on (x , y , z) ∈ Rn+2.

The set of sing. points of (1) is a submanifold S ⊂ Rn+2 of
codimension 2, and the spectrum at every sing. point is

(λ1, λ2, 0, . . . , 0).

The Roussarie condition: λ1 + λ2 = 0 at every sing. point.
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Introduction

Further we deal with orbital normal forms, that is, it is allowed to
multiply vector fields by non-vanishing functions.
Then there are three possible cases:

Real (hyperbolic) case: λ1,2 = ±1

Imaginary (elliptic) case: λ1,2 = ±
√
−1

Zero (parabolic) case: λ1,2 = 0

Roussarie investigated the real and imaginary cases. Under some
genericity conditions, he obtained orbital normal forms (n. f.):

Real (hyperbolic) case: C∞-smooth n. f.

Imaginary (elliptic) case: Formal n. f.
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Introduction

Real (hyperbolic) case: The germ of (1) is orbitally
C∞-smoothly equivalent to

ẋ = x , ẏ = −y , ż1 = xy , żi = 0, i = 2, . . . , n

Imaginary (elliptic) case: The germ of (1) is orbitally
formally equivalent to

ẋ = y , ẏ = −x , ż1 = x2 + y2, żi = 0, i = 2, . . . , n

Highly likely, the implication {formal n. f. ⇒ smooth n. f.} holds
true for imaginary case as well. However, the proof of this
conjecture is an open problem.
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Hyperbolic Roussarie vector fields: Definition

From now on, we consider vector fields (named after Roussarie)

ẋ = v , ẏ = w , żi = aiv + biw , i = 1, . . . , n, (2)

where x ∈ R1, y ∈ R1 and z = (z1, . . . , zn) ∈ Rn, satisfying the
following conditions:

The spectrum at every sing. point is

(λ1, λ2, 0, . . . , 0), Reλ1,2 6= 0,

qλ1 + pλ2 = 0, p, q ∈ Z+, gcd (p, q) = 1. (3)
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Hyperbolic Roussarie vector fields: Preliminary n. f.

Theorem (Preliminary n. f.)

Any Roussarie germ is C∞-smoothly orbitally equivalent to

ẋ = px(1+Φ1(r , z)), ẏ = qy(−1+Φ2(r , z)), żi = rΨi (r , z), (4)

where r = xqyp (resonant monomial), Φ1,2 and Ψi are smooth
functions, Φ1,2(0, 0) = 0.
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Hyperbolic Roussarie vector fields: Preliminary n. f.

Construct the quotient vector field of (4).
First, in the (r , z)-space (4) generates the field

ṙ = ˙(xqyp) = qxq−1yp ẋ + pxqyp−1ẏ =

qxq−1yppx(1 + Φ1) + pxqyp−1qy(−1 + Φ2) =

pqr(Φ1 + Φ2),

żi = rΨi (r , z), i = 1, . . . , n.

Reducing the common factor r , we get the quotient field:

ṙ = pqΦ(r , z), żi = Ψi (r , z), i = 1, . . . , n, (5)

where Φ(r , z) = Φ1(r , z) + Φ2(r , z).
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Hyperbolic Roussarie vector fields: Preliminary n. f.

The quotient vector field of (4):

ṙ = pqΦ(r , z), żi = Ψi (r , z), i = 1, . . . , n, (5)

where Φ(r , z) = Φ1(r , z) + Φ2(r , z).

Genericity condition: ∃i ∈ {1, . . . , n} that Ψi (0, 0) 6= 0.

In other words, this means that 0 is not a sing. point of (5), since
Φ(0, z) ≡ 0 due to the condition that vector field (4) has the same
resonance (3) at all sing. points.
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Hyperbolic Roussarie vector fields: Final n. f.

Theorem (Final n. f.)

Any Roussarie germ satisfying the above genericity condition is
C∞-smoothly orbitally equivalent to

ẋ = px , ẏ = −qy , ż1 = xqyp, żi = 0, i = 2, . . . , n.

Moreover, it is C k−1-smoothly orbitally equivalent to

ẋ = px , ẏ = −qy , żi = 0, i = 1, . . . , n, (6)

where k = max{p, q}. But not C k -smoothly!
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Hyperbolic Roussarie vector fields: Simplest example

Simplest example:

ẋ = x , ẏ = −y , ż = xy , (x , y , z) ∈ R3.

Any saddle surface of this field has the form z = −1
2F (x , y), where

F (x , y) = f (xy) + xy ln
∣∣∣y
x

∣∣∣, if xy 6= 0,

and F (x , y) = 0, if xy = 0. Here f is an arbitrary continuous
function.
Is it possible that ∃f : F ∈ C 1?
A very simple reasoning shows that NO. It can be F ∈ C 0 only.
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Hyperbolic Roussarie vector fields: Simplest example

Figure: Two examples of C 0 saddle surfaces of the vector field
ẋ = x , ẏ = −y , ż = xy :
z = − 1

2xy ln |y/x | (left) and z = −xy ln |y | (right).
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Hyperbolic Roussarie vector fields: Exceptional points

Now consider the germ of the vector field

ẋ = px(1+Φ1(r , z)), ẏ = qy(−1+Φ2(r , z)), żi = rΨi (r , z), (4)

such that
Ψi (0, 0) = 0 for all i = 1, . . . , n.

The equivalent condition: the corresponding quotient vector field

ṙ = pqΦ(r , z), żi = Ψi (r , z), i = 1, . . . , n, (5)

Φ(r , z) = Φ1(r , z) + Φ2(r , z), vanishes at 0.
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Hyperbolic Roussarie vector fields: Exceptional points

Assume that the spectrum of (5) is non-resonant. Then by the
Sternberg–Chen theorem, the germ of vector field (5) is
C∞-smoothly orbitally equivalent to the linear field

ṙ = µ0r , żi = Ψi (z), i = 1, . . . , n.

Here all Ψi (z) are linear functions. Moreover, Ψi (z) = µizi or
Ψi (z) = αizi + βizi+1, where µi , αi , βi are reals.

Theorem

Any Roussarie germ satisfying the above conditions is
C∞-smoothly orbitally equivalent to

ẋ = px(1 + αr), ẏ = −qy(1 + βr), żi = rΨi (z), r = xqyp,

where α, β are real numbers, Ψi (z) are linear functions described
above. The ratio α : β is invariant.
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