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2. DIFFERENTIAL-ALGEBRAIC PROBLEMS SETTING

2.1. The Dubrovin’s integrability classification. Let
A-(u) = K(u)|luy,us, ....;up, ...|[le]] be a specially de-
fined differential ring, depending on a chosen element
u € K and a free parameter . The Dubrovin’s inte-
grability classification [19, 20, 21| of a general evolution
equation
(2.1)

w; + f(w)uy, = [ for(u) gy + foo(u)u2]+

_|_g2[f31(u Hrrr —+ f32(u)uIUTT + f33u ] + ...+

e i) TT ()" ] = Fvatw

=



o

with graded homogeneous polyvnomials of the jet-variables

{te s gy s Upore...} € J(R;R), where f’(u) £ 0 for

arbitrary v € K = C°°(R:R), consists in describing

the set F of smooth functions f;,(uw), o := {k; € N :

> i~ Jk; = N}, with a fixed natural integer NV € N,

for which the equation (2.1) reduces by means of the

following transformation

(2.2)

v —> fu-—l—Z P (w, U, Uy o, TR = u4-1y_ (1) € exp A.
keN

with finite orders mjz; € N, k£ € N, to the form
(2.3) vs + f(v)v, = 0,

and when the transformation (2.2) is applied to an ar-
bitrary Riemann tvpe symmetry flow

(2.4) ve + h(v)v, = 0
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(2.3) v + f(v)v, =0,

and when the transformation (2.2) is applied to an ar-
bitrary Riemann type symmetry flow

(2.4) ve + h(v)v, =0

with respect to an evolution parameter s € R, the latter

reduces to the canonical form

(2.5)

us+h(u)u, = Z Mg (s, 2 s s u™)) = Ho (1) € A (u).
keN



n

In the Dubrovin’s works there was formulated the fol-
lowing interesting differential-algebraic integrability cri-
terion:

Definition 3.1. The evolution equation (3.1) is defined
to be formally integrable, iff the corresponding inverse

to (3.2) transformation
(3.5)

v ”+Z Ek'nﬁ.: (u Uy y Ugegey +eny u(mk)) = U) (u) S exp(AE(u))
keN

with finite orders m; € N,k € N, being applied to an
arbitrary Riemann type symmetry flow

(3.6) vs + h(v)v, =0
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(3.6) vs + h(v)v, =0

with respect to an evolution parameter s € R, reduces

to the form

(3.7)

ugth(uu, =3 by (w2, o u™) = Ho(u) € A-(u)
keN

with uniform homogeneous differential polynomials wy (w, x, . ..., uk )) S
K(u) |ug,us, ..., up, ...],u € IC, of the order k € N.

Remark 3.2. In their works B. Dubrovin and his collab-
orators applied this scheme to the equation
(3.8)

Ut + U, = 53 [f'Bl (u)urrr + f32 ("u)"u:atu;r;r + f3‘3(u)ui]

and described [21] the complete classification of its in-
tegrable representatives.



The main Dubrovin’s motivation which led him to
formulation the criterion above was based on a fact that
all flows (3.6) are integrable and commuting to each
other for arbitrary smooth mapping A : £ — K of the
functional ring K. In what will follow below we will rein-
terpret this criterion in somewhat simpler differential-
algebraic terms, having observed that the left hand side
expressions of the equations (3.1) and (3.7) are deeply
related with functional 7 convective” derivations Dgf ) =
/Ot + f(o0)0/Ox and Dgh’) = /Ot + h(o)d/Ox, respec-
tively. Moreover, the reducing isomorphism (3.2) of
rings A-(uw) = K(u)|uy,us, ...,up, ...|[[g]] and A-(v) =
K(v) |v1,v2, ..., 0k, ...|||g]] 1s, In reality, defined on the
set Zy = {v =u—+1n_.(u) € exp A-(u),u € K} of con-
stants of the derivation D]_Ef) = O/0t + f(0)0/Ox, that

1S Dﬁf )y = O,v € Zy. In particular, we can also observe



1S th o = 0.,v € Zr. In particular, we can also observe
that the featuring ingredient of the Dubrovin’s integra-
bility criterion above consists in checking that for any
smooth mapping h : K — K the inverse to (3.2) trans-
formation (3.5), maps the set Z, C exp .A. of constants

of the derivation DY) = d/0s + f(o)0/O0x, s € R, into
the differential expression D& = ou /Os+ h(u)ou /0,
perturbed by means of some differential term from the
ring A.(u). As a logical inference from the properties

mentioned above we can easily deduce the following rea-
SoONings.



-L |

perturbed by means of some differential term from the ring A. ().
As a logical inference from the properties mentioned above we can
easily deduce the following reasonings, formulated by means of the
differential algebraic tools. Namely, based on the element v € Z;.
one can construct for every N € N a subset I. vy C A.(u) :

(3.9)

Lv()i={ 3 aje()Div: v =t (u) € Zp, a5 (u) € Ac(u)}
j=1,N

of the differential ring A.(u), which proves to be its ideal,
invariant with respect to the ”convective” differentiation Dﬁf ) —
00t + f(v)0)0x,v € Zs, as DY v =0 and

(3.10)

D" Dtv = D, (D" Di~*0) ~(D.f(v)) Dhv..... DY) Dy = = (D, £(v) D



N

for all £/ € N. Comnsider now a smooth invertible trans-
formation .f(h’) K — K. 'fzh,) # 0, satisfying the condition
fo&wuy = h, where h : K — K is any smooth and invertible
mapping, and calculate the expression

(3.11)
D:(qf}|’t.r—>£{h)(’w)(g(h,) (u”)) 0 > £Eh) (u”)((‘ﬁ)“”/(‘ﬁ)sJr

y y h
+f o &y (w) dw/dx) = &, (w)D{w =0,

meaning, in particular, that this transformation maps the

set of constants ~Z; C exp A. of the derivation DS” i —
O/O0s+h(v)0/0x into the set of constants Z C exp A.,v =

E(n) (w), of the derivation Dgf) = 9/90s + f(w)0/Ox, where
w = u+ n.(u) € exp Az for uw € K. The latter makes it
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tion DY) := 0/0s+ f(w)d/0x, where w = u+n_(u) € exp A. for
u € K. The latter makes it possible to state that the correspond-
ing to (3.9) ideal

(3.12)

[ n(w) = Z a;-(0)DIw:w=1u+n.(u) € Zy,a;-(a),by..(u) € A(a)},
j=1,N

1s also invariant with respect to the derivation Dgh’) = 0/0s +

h(w)0/0x, w € Zy,, for any h: K — K. Moreover, as the invari-
ance of the ideal (3.9) takes place iff there holds the equivalence

(3.13) DY+ (u) =0« DYy = Fy_(u),
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the equivalence
(3.13) DI (u+n_(u)) =0<«= DVu= Fy._.(u),

analogously the invariance of the ideal (3.12) takes place
iff there holds the equivalence

(3.14) D" (u+n_(u) =0« D"u=H_(u),

what coincides exactly with the B. Dubrovin’s criterion
(3.7). Thus, one can summarize the reasonings above as
the following theorem.



.

Theorem 3.3. Let f € K and the invertible smooth map-
ping Euy K — K be defined via the composition f o
Eny = h, where h: K — K is any invertible smooth map-
ping. Then the evolution flow (5.1) is integrable. iff the
set Zy :=H{v :=u+n_(u) € expA.,u € K} of constants
of the derivation DY) = J/0s + f(v)0/0x, s € R, coin-
cides modulo the mapping £, : K — K with the set of
constants Zp, = {w = u+n_.(u) € exp A.,u € K} of the
derivation D" = J/0s + h(0)0/0x, where u—+ n_(u) =
5(_}11) (w+n_(uw)), ut+n.(u) € Z¢. Moreover, the correspond-
ing ideals I.(v) € A-(u) (3.9) and I.(w) € A-(1) (3.12)
are invariant iff there hold, ., respectively, the equivalences
(3.13) and (3.14).



The Lie-algebraic commutator relationship

D,,D,] = —(D,u)D,
i and its endomorphic representations

2.2. Endomorphic representations of the Lie-algebraic
commutator relationship |D;,D.| = —(D,u)D,.

We have also considered the functional ring £ := C*°(R x R; R)
of real-valued smooth functions on the spatial-temporal

plane R x R and the corresponding differential polyno-

mial ring K{u} = K[Ou] with respect to an arbitrary

vet fixed function variable v € K. where © is the
standard monoid of commuting to each other ” shifting”
derivations 0/0z and 9/0t. The ideal I{u} C K{u} is
called differential [6, 10, 28, 27, 29] if [{u} = OI{u}.
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On the invariant differential ring K{u} one can con-
struct naturally another ” convective” functional deriva-
tion D; := O0/0t + ud/Ox, satisfying jointly with the
derivation D, := 0/0x the Lie-commutator relationship

(2.6) ‘D,.D,] = — (D,u) D,.

Then one can pose the following inverse problem:

Problem 2.2. To describe the possible linear endomonr-
phic representations D, — l(u) : K{u}?V — K{u}?V
and D; — p(u) : K{u} — K{u}" of the derivations
D, and D; : K{u} — K{u}, respectively, satisfying the
related differential-matrix relationship

(2.7) D, ol(u) — D, o p(u) = — (Dyu)l(u),
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(2.7) D, ol(u) — D, o p(u) = — (Dyu) (),

imaitating the Lie-commutator relationship (2.6) on suit-
ably related vector spaces K{u}™.N € N.

It is easy to get convinced that for an arbitrarily cho-
sen element u € K there exists the unique linear endo-
morphic representation of the derivations D, — [(u) :
K{u}V — K{u}? and D; — p(u) : K{u} — K{u}?.
satisfying the differential-algebraic relationship (2.7) on
the finite dimensional vector spaces )'C{-u}N? N € N, and
coinciding tautologically with the functional 7 conwvec-
tive” and 7 shifting” derivations D; := 0/0t + ud/0x
and D, = 0/0x, respectively. Nonetheless, if some
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comnciding tautologically with the functional ” convec-
tive” and 7 shifting” derivations D; := 0/0t + ud/0x
and D, := 0/0x, respectively. Nonetheless, if some
additional differential-algebraic constraints are imposed
on an element u € K, the Problem 2.2 becomes not
trivial and solvable, as it was before demonstrated in
31, 32, 33, 34, 35|, where there were constructed lin-
ear finite-dimensional matrix representations of the Lie-
commutator relationship (2.6) in the naturally related
functional vector spaces ]C{u}N for the corresponding
dimensions N € N.



To make the approach, proposed previously in [33] for
constructing such finite-dimensional representations of
the Lie-commutator relationship (2.6), more elaborated
and practically feasible, we considered below in detail
a new Iinteresting enough differential-algebraic scheme,
ensuing from the differential Riemann type relationship

(2.8) D}'z(u) := (0/0t + u(x,t)0/0x)" z(u) = 0.

imimposed on an element z(u) € K for n € N and
an arbitrary v € K. It makes it possible to proceed
from the ring K{u} to the Liouville type extended ring
Kn{z(u)}, n € N, generated by elements

(2.9)

{z(u), Diz(u),.... D} 'z(u) € K{u} : D'2(u) = 0,u € K}

and to pose the following slightly modified problem 2.2:



(2.9)
{2(u), Diz(u), ..., D} ' 2(u) € K{u} : DI'2(u) = 0,u € K}

and to pose the following slightly modified problem 2.2:

Problem 2.3. To describe the possible linear finite di-
menstonal representations of the derivations D, ., Dy :
Koiz(uw)} — K. {z(u)}, n € N, satisfying the related
endomorphic differential-algebraic relationship (2.7) n
the functional vector spaces K, {z(u)}" for some suit-
ably chosen m € N.
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Proceed now to the before formulated Problem and
. . . . — (¥
consider the functional element 2(*") = (DD} 1z(u)) €

Kn{z(u)},n € N, for « € R\{0}, generating for any
m € N the finite-dimensional " tangent” ideal

(4.1)
v n—1 . m—1 m—qi— a:n) .
om{z(w)} = {155 geDF= + 75" fi (= D)7l

gk, fi €K {z(w)b k=0,n—1,7=0,m—1,D}'>(u) =0,u € K}
in the differential ring &C,,{z(u)}. The next lemma holds.

Lemma 4.1. The ideal (4.1) is invariant with respect
to the “convective” derivation Dy : K, {z(u)} — K, {z(u)}.

n € N, that is Dtly(fgl{z(u)} C Iﬁﬂ%{z(u)} a € R\{0}
for any m € N at any u € K.



Proof. Observe that, owing to the basic differential re-
lationship Dy (D]~ '2(u)) =0, n € N, for o € R\{0},
one easily obtains a set of recurrent expressions:
(4.2)
D,(D¥z) = Di 2, Dz = o(Dyu)z(m),
D, (sz(“;”)) = (a— D,u) D, 2t
D, (Dittxlem)y = D, (DD, 2™ — (D,u) (D7 tt2()) | ..

for 7 = 0,m, respectively. guaranteeing the invariance
of the "tangent” ideal (4.1) with respect to the ” con-
vective” derivation Dy : K, {z(u)} — K, {z(u)} for any

n,m € N at any u € K. []



Now let us consider the simplest case n = 1, m = 2. for
which the invariant ideal equals
Il(fﬂg){z(-u.)} = {foD .z — 20D £y £ e Ki{z(u)}}.

Based on Lemma 4.1, one can easily find the kernel Ker
D, C If'_‘?{z(u}} of the derivation Dy : Ki{z(u)} — Ki{z(u)}.
suitably reduced on the invariant ideal (4.3):
(4.4)

Ker D, = {fDDTz(‘I;l) — f1z(xl) ¢ Il(?{z(u)} :

Difo=(1—a)foDyu. Dif; = afoD2u— afiD,u}.



The latter makes it possible to construct a finite-dimensional

linear endomorphic repre&en‘tatmn D; — p(u) : Ki{z(u)}? —
K1{z(u)}? of the ” convective” derivation D; : K1{z(u)} —
K1{z(u)} in the equivalent matrix form:

1= oy (I—a)Dyu 0
o (0P

for any a € R\{0}.



Concerning the related finite-dimensional linear endo-
morphic representation D, — [(u) : K1{z(u)}? — Ki{z(u)}?
of the 7 shifting” derivation D, : Ki{z(u)} — Ki{z(u)}. we
easily obtain that it satisfies the endomorphic differential-
matrix relationship

(4.6) Dy ol(u) — Dy op(u) = — (Dyu) l(u),

mimicking the Lie-commutator relationship (2.6), and which
we will analyze in more detail using the functional structure
of the kernel subspace (4.4). The latter can be derived the
following way: first we observe that, as follows from (4.4),
the element fl = D, fo € K{z(u)} satisfies the differential
relationship

(4.7) D, f1 = (1 —a)foD?>u — afi1D. .



.

(4.7) D:f1 = (1 — ) foD?u — af1D,u,

which exactly coincides with that on the element f; €&
Ki{z(u)} :

(4.8) D, f1 = a'fUD__%u —af1D,.u

at a = 1/2, simply meaning that at a« = 1/2 the element

—

fi = f1 € Ki{z(u)} and the linear endomorphic represen-
tations of the derivations D.. D, : Ki{z(u)} — Ki{z(u)}

can be realized with respect to the linearly related to each

other basis
(4.9)
{fo.f1 = Dofo € Ki{z(u)} : Difo = 1/2fo D u,

Dif1 = 1/2(foDZu — f1D,u)}.
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Really, taking into account the above relationships (4.9) and the
Lie-commutator relationship (2.6), one easily obtains that

(4.10) DTfU — fl._. DIf1 — 1/2'1-"("1&-) f[)._.
if the additional functional constraint
(4.11) Div(u) 4+ 2v(u)Dyu — D3v(u) = 0

is imposed on an element v(u) € K1{z(u)}. In particular, if we
put, by definition, v(u) := u € Ki1{z(u)}, then the differential-
algebraic relationship (4.11) reduces to

(4.12) Diu +2uD,u — D>u = 0,

which is equiavlent to the well known nonlinear Korteweg-de Vries
dynamical system

(4.13) Up = —3UU, + U3,
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(4.13) Uy = —3UU, + Usy

on a suitably chosen functional manifold M C K. On the other
hand, if we put, by definition, v(u) := D,u € K1{z(u)}, then the
differential-algebraic relationship (4.11) reduces, respectively. to
the next differential-algebraic relationhip

(4.14) D.Diu + (Dyu)? — D3u = 0.

Simultaneosuly, the obtained above differential-functional rela-
tionships (4.10) give rise right away to the following matrix rep-
resentation

(4.15) Hu) = ( 1/23%“ é )

on the linear functional vector space K1{z(u)}? of the derivation
D, : Ki{z(u)} — Ki{z(u)}, satisfying jointly with the matrix



on the linear functional vector space K{z(u)}? of the derivation
D, : Ki{z(u)} — Ki{z(u)}, satisfying jointly with the matrix
representation (4.5) the related differential-matrix endomorphic
relationship (4.6), solving the posed above Problem 2.3. Thus, the
results obtained above can be formulated as the following theorem.

Theorem 4.2. Let a function u € K satisfy the following dif-
ferential relationship:

(4.16) D.Du+ (Dyu)® — D3u = 0.

Then the following linear matric endomorphisms
(4.17)

Hu) = ( 1/2[;)xu é ) plu) = ( %ggzg —1/;}Dxu, )

on the functional vector space Ki{z(u)}? solve the differential-
matrix endomorphic relationship (4.6). imitating the Lie-commutator
relationship (2.6).



.

Remark 4.3. It is worth to mention here that the differential-
functional constraint (4.11) on an element u € K, rewritten in
the following equivalent partial differential equation form

(418) Uty + Ulyy + 2“2 — Ugppyr = 0

is  well known in fluid mechanics |41, 42, 43, 44| as the gener-
alized Proudman-Johnson equation and was recently analyzed in
the work [45] by means of differential-geometric tools, and where
there was constructed its differential covering [53, 54| in the non-
linear form

(4.19) G = —q°+1/2u,,
dt — qu — Uzp( + 1/ 2(“;1‘.;1‘. — uur)

by means of a smooth functional element ¢ € K;{z(u)}. Yet, as
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(4.19) G = —q>+1/2u,,

qJt = qu — Uy + 1/ 2(“;1?;1‘. _ UJUJI‘)
by means of a smooth functional element g € Ky{z(u)}. Yet, as
is easily to check, the differential covering (4.19) reduces via the

substitution ¢ = D, (In fo), fo € K1{z(u)}, to the obtained above
linear differential relationships (4.9) and (4.10).

We can here observe that the construction above can be easily
generalized to the case of a derivation D&O) = 0/0t + p(u)d/0x
in the suitably Liouville type extended ring ]C.gf){z(u)},n € N,
where ¢(u) € K{u} and v € K is such that for some element
z(u) € K there holds the next constraint

(4.20) D" 2 (w) i= ()0t + p(u)D/0x)" 2 (u) = 0.
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(4.20) D" 2 (u) = (00t + o(u)d]0x)" 2(u) = 0.
The derivation DE(‘&) : }C;Ef){z(u)} E ]C-;(f){z(u)} satisfies the

following analog of the Lie algebraic commutative cndition (2.6):

(4.21) D). D,] = = (Dup) D..
Then one can similarly construct the set
(4 22)

n p)k m— m—j—1.(a:n
G e} = {5 DI 4 SIS (-Da)

i, [j € /Cgfo){z(u)}? k=0n—-1,7=0m—1,D'z(u) =0,u € ]C}
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Then one can similarly construct the set

(4.99)
‘e n— o)k m— m—qj— an
I&’in){z(u)} = { k:é ngE(*’) z ijol fi(=Dy)"™ tylem) .

gr. [ € ]C-E{'O){z(u)}, k=0n—-1,7=0m—1,D"z(u) =0,u € }C}

in the differential ring }C%@{z(-’u)}, where, by definition, 2(®") =

(DmDEL’O)(H'l)z) B ,a € R\{0}. The next lemma holds.

Lemma 4.4. The ideal (4.1) is invariant with respect to the
“convective” derivation D'+ K {z(u)} = K {z(u)}, n € N,

that is Dit’o)f?(fﬁl{z(u)} C L(f%{z(u)}, a € R\{0} for anym e N
at any u € K.



Lemma 4.4. The ideal (}.1) is invariant with respect to the
“convective” derivation D'¥) : K\ {z(u)} — K {z(u)}. n € N,
that is Di(:t’o)[?(fﬁl{z(u)} C L(f%{z(u)}, a € R\{0} for any m € N
at any u € K.

Proof. Observe that, owing to the basic differential relationship
D!#) (Dit’o}(ﬂ'_l)z(-u)) = 0, n € N, for a € R\{0}, one easily

obtains a set of recurrent expressions:

(4.23)
Dgw}(D(@)k ) D(%—f’“)(kﬁLl) z, D(ﬂf?}?,(a-n} _ (D (,/)Z(a;'”'),
D (D, ,m ™)) = (v — Dyip) Dypz(@m)
D (Di+ta(eim) = D, (DY) D7) — (D) (D712 .

for 7 = 0,m, respectively, guaranteeing the invariance of the
"tangent” ideal (4.1) with respect to the ” convective” derivation

D, : }C%"D){z(u)} — K {z(u)} for any n.m € Nat any u € K. O
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As before let us proceed to the simplest case n =1, m = 2, for
which the invariant ideal equals

(4.24)
I(ty ;) {7 } _ {fUsz(CK;l) . flz(a:;l) : anfl c Kjgtp){/’f(u)}}

Based on Lemma 4.4, one can easily find the kernel Ker DE(’Q) C
Il(i,;a){z(u)} of the derivation D% : ]C.,(fo){z(-u)} — ]C-S’O){z(u)},
suitably reduced on the invariant ideal (4.3):

(4.25)
Ker D{¥) = {foD,2(*1) — f2(1) ¢ I((*“ ()}

D) fy = (1 —a)foD.p. D) fi = afyDyp — afi Dy}



The latter makes it possible to construct a finite-dimensional lin-
ear endomorphic representation DTEL'O} — p)(u) : ]CYP){Z(U)}Q —
]Cg(‘“@){2:(-1&,.&)}2 of the 7 convective” derivation D],EL’O} ; ]Cg{p){z(u)}

— ]C%L’D){z(u)} in the equivalent matrix form:

(4.26) plP) (u) = ( D2 b

for any a € R\{0}.

Concerning the related finite-dimensional linear endomorphic
representation D, — [P (u) : K\7{2(u)}? — ]C%C*G){;z(-u)}2 of
the 7 shifting” derivation D, : /C%‘*Q){z(u)} — ]Cg’o}{z(u)}? we eas-
ily obtain that it satisfies the endomorphic differential-matrix re-
lationship

(4.27) D ol (u) — D, 0 p¥) (u) = — (Du) 19 ().
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(427) D ol (u) — D, o p'® (u) = — (Daip) 1) (u).

mimicking the Lie-commutator relationship (2.6), and which we
will analyze in more detail using the functional structure of the
kernel subspace (4.4). The latter can be derived the following
way: first we observe that, as follows from (4.4), the element

fii=D,f € }C?){z(u)} satisfies the differential relationship
(4.28) Dg“ﬁ)fl = (1 —a)foD.p — ale;rtp,

which exactly coincides with that on the element f; € }ng) {z(u)} :
(4.29) Dt = afoD*0 —afiD.p

at o = 1/2, simply meaning that the element f; = f, € ]Cg{’o){z(u)} |
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(4.29) Dy fi = afoDip —afiD.¢

at a = 1/2, simply meaning that the element fi=1f € ]Cgc’p){z(u)}
and the linear endomorphic representations of the derivations D, DE ?) .

(’9){7 (u)} — ]C {7 )} can be realized with respect to the lin-
early related to each other basis

{fo,fi=D.fo € Kﬁ“”{z(-u)} i ngﬁ)fo =1/2foD.¢,
(4.30)
D fi = 1/2(fuD2¢ — f1D, )},



n

Really, taking into account the above relationships (4.9) and the
Lie-commutator relationship (2.6), one easily obtains that

(4.31) D.fo=f1, D.fi=1/2v(u) fo,
if the additional functional constraint
(4.32) D v(u) + 20(u) Dy — D3o(u) = 0

holds. In particular, if to assume that the element v(u) = u + A,

where A € R is an arbitrary parameter, then the relationship
(4.32) is rewritten as

(4.33) Ou/ot = (D> —uD, — D,u)p —2\D,p,
naturally meaning that the element p(u) = @(u;\) € K{u}
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(4.33) Ou/ot = (D? —uD, — D,u)o —2\D 0.

naturally meaning that the element p(u) = p(u; ) € K{u}
should a priori  depend on A € R. Moreover, as the left hand
side of (4.33) does not depend on on A € R the right hand
side is linear A € R, whence one easily derives that the following
polynomial representation

(4.34) o(uA) = @, () = Y g (w)A"

7€0.m

solves (4.33) if the coefficients ¢, (u) € K{u}.j = 0,m, satisfy the
following recurrent relationships

(4.35) (D;’, —uD, — Dir-'u)apj(u) = QDmnij(-u)



(4.35) (D§ —ulD, — Dmu)@j(u) = QDI%H(U)

under the initial condition ¢, = 1, as should be, evidently, D¢, (1) =
0 for any u € K. In particular, we find that ¢, (u) = —1/2u, ¢4(u) =
1/4(3u® — D?u)... etc. Whence the expression (4.33) obtains for
any m € N the following reduced form of the nonlinear dynamical

system
(4.36) Ou/ot = (D> —uD, — D,u)p, (u)

on the functional manifold M C K.
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Remark 4.5. 1t is worth to mention here that since the differential
operator 1 := (D2 —uD, — D,u) : T*(M) — T(M) is skew-
symmetric and Poissonian |46, 47, 23, 51| on the functional
manifold M, it allows to restate the well known fact |52, 49,
50] that nonlinear dynamical system (4.36) is Hamiltonian with

respect to the Hamiltonian function H,,, := 01 dp(e,, (pu)|u), m €
N, where (:|-) denotes the standard bilinear convolution form on
the product 7™ (M) xT'(M). Moreover, as the differential operator
Vo= D, T*(M) — T (M) is also skew-symmetric, Poissonian
on M and compatible with the operator n: 1™ (M) — T'(M), one
derives that the whole infinite hierarchy of Hamiltonian dynamical
systems (4.36) for all m € N is commuting to each other, being
equivalent to its integrability.



The stated above existence of the Lax type representation (4.6)
for the partial differential equation (4.18) nonetheless can not
ensure its integrability, as the latter still requires the existence
of an infinite hierarchy of nontrivial and functionally independent
conservation laws, what the corresponding to (4.18) evolution
flow fails to possess. To demonstrate this we will make use of
the gradient-holonomic integrability scheme |15, 26|, which first
consists in finding special asymptotical solutions to the following
Lax-Noether functional equation

(4.37) o+ K [ulp =0,
where, by definition, ¢ €& T*(ﬂj)*?[(”*[u] T (M) — T*(M)

denotes the adjoint expression of the Frechet derivative K'[u]
T'(M) — T'(M) with respect to the natural bilinear form 7™ (M ) x
1T'(M) — R for a vector field K : M — T'(M) on asuitably defined
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functional manifold M C C*°(R;R), determined by means of the
following analytic expression:

4.38 Uy = —utly + Uy — 0 u? = Klul.
( ;

As the related with the vector field (4.38) operator K [u] =
uD, + D? — 2D tu,D,. it is easy to find the asymptotic as
|A| = oo solution ¢ = exp [—)\zt + D 'o(u; N)| to the functional
equation (4.37), where

(4.30) LU IV S

JELLU{-1}
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JELLU{-1}

and whose coefficients satisty the foillowing recurrent differential-
functional relationships:

—0j 9+ D;laj__t +uo;+0j,+ Z 0oy —2a; = 0,

kEZ+U{—1}
(4.40) ety g — U0y = 0
kEZ_|_U{—1}

for j € Zy U {-2,—1}. Since the quantities [, o;[uldz,j € Z.,
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for j € Zy U {-2,—1}. Since the quantities [, 0;[uldx,j € Z,
should be, by construction, conservation laws for the vector field
(4.38), we easily obtain from (4.40) that a_y =0,0_; = 1;a¢ =
Uy, 00 = —u/2. To obtain the next functional elements a; and
o1 one needs to state that the quantity [, oo[uldr is conserved
along the vector field (4.38), yet one easily obtains that

d
t

(4.41) ooluldr # 0,

thus meaning that the asymptotic expression (4.39) does not gen-
erates an infinite hierarchy of nontrivial conservation laws for the
vector field (4.38), thus contradicting its Lax type integrability.
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Moreover, it possessess, respectively, no Poissonian structure on
the functional manifold, subject to which the vector field (4.38)
could be represented as a Hamiltoninan system. The obtained
result we formulate as the following proposition.

Proposition 4.6. The nonlinear evolution flow (4.38) does not
generate a Lax type integrable Hamiltonian dynamical system on
the functional manifold M.

Proceed now to the case n = 2, m = (), when the D; — invariant
two-dimensional ideal (4.1) in the differential ring Ko{z(u)} is
presented as



o

Proceed now to the case n = 2, m = (), when the D, — invariant
two-dimensional ideal (4.1) in the differential ring Kof{z(u)} is
presented as

I;Ef:a){z(u)} = {Agoz(u) + g1 Dy 2(u)
(4.42)

go. g1 € Ko{z(u)}, D?z(u) =0, e R,u € K},

and construct the related representation of the endomorphic differential-
matrix relationship (4.6). First we need to construct the kernel

Ker D, of the ” convective” derivation Dy : Ko{z(u)} — Ko{z(u)},
reduced on the ideal (4.42) above to

(4.43) Ker Dy ={g0,91 € Kof{z(u) : Digo =0, Drg1 = —Ago}-

The latter produces the endomorphic matrix representation [); —

plus N) 2 Kofz(u)}? — Kaof{z(u)}? of the ” convective” Dy : Ko{z(u)}
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The latter produces the endomorphic matrix representation 1); —

p(u: N) s Kof{z(u)}? — Ko{z(u)}? of the ” convective” Dy : Ko{z(u)}

— Ko{z(u)} in the functional vector space Ko{z(u)}?, where

(4.44) p(u:A) = ( —0)\ 8 )

for an arbitrary element u € K, depending on an arbitrary "spec-
tral” parameter A € R. To obtain the corresponding endomorphic
matrix representation D, — [(u: ) : Ko{z(u)}? — Kofz(u)}?
of the 7 shifting” derivation D, : Ko{z(u)} — Kof{z(u)}, we will
solve the corresponding matrix relationship (4.6), rewriting it in
the following simplified matrix form:

(4.45) Dya(u: A) = [p(u: A), a(u; A)],
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(4.45) Dia(u; A) = [p(u; A), a(u; A)],

where we put, by definition, [(u; \) := Dya(u; A\), A € R,u € K.
The differential-matrix relationship possesses the following simple
solution

(4.46) au: \) = ( v ?;j(‘;)) )

giving rise to the following matrix [(u; \) € End(Ko{z(u)?), rep-
resenting the derivation D, : Kof{z(u)} — Ko{z(u)} :

aan = (A Bpe ),
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aan) iy = (M D)

depending on an arbitrary " spectral” parameter A € R. The result
obtained above we can formulate as the following theorem.

Theorem 4.7. The differential-algebraic relationship D?z(u) =
0,where D, = 0/0t +ud/0x is the functional ”convective” deriva-
tion of the differential ring Kof{z(u), is equivalent to the differential-
matrix relationship (4.6) for any element u € K and a parame-
ter A\ € R with the endomorphic matriz representations Dy —
p(u; \) € End(Ko{z(u)}?), D, — l(u:\) € End(Ko{z(u)}?) of
the “convective” and “shifting” Dy, D, : Ko{z(u)} — Ko{z(u)}
derivations, respectively, given by the matrix expressions (4.44)
and (4.47).



It is easy to observe that the above result is naturally general-
ized on the case of the invariant differential ideal (4.1) for arbitrary
necN, m=0:

)} = {00 9 DE(u) < gr € Kufz(w)),
(4.48)

k=0,n—1,D'z2(u) =0,u € K}

in the differential ring IC,,{z(u) }, whose details we drop out. Namely,
the following theorem holds.



in the differential ring K,,{ z(u) }, whose details we drop out. Namely,
the following theorem holds.

Theorem 4.8. The differential-algebraic relationship D} z(u) =
0,n € N, us equivalent to the differential-matriz relationships (4.6)
for any element uw € K and a parameter A € R with the endo-
morphic matriz representations Dy — p(u; N) € End (K, {z(u)}"),
D, — l(u;\) € End(K, {z(u)}") of the "convective” and ”shift-

ing” D¢, Dy 2 Kp{z(u)} — Ko {z(u)} derivations, respectively,
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given by the matrix expressions

(4.49)

and

(4.50)

p(us A)

/ \D, D! *z(u) D
0

()

\ —n\"

[0

Dn 1 (LL

)\D DI~2x(u) ...

0_
—n\" 2 ()

0 0

0 o\

0 0

0 0
X 0 )

0

0

(n—2)D, D" ()
AD, D2 (u)
__n)\QDID;l—BZ(u)

(n—
A1 -

1)D, D2 (u
0Dy %) )
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The obtained results in some sense generalize the ones, ob-
tained before in the works (35, 36|, devoted to proving the Lax
type integrability |26, 23, 48, 25| of a generalized Riemann type
hierarchy of differential-algebraic relationships Dj'u = 0 for v € K
and natural n € V.

An interesting problem and not analyzed here is to construct
nontrivial finite-dimensional endomorphic representations D; —

p(u; )\) e End(K, {z(u)}"), D, — l(u; \) € End(K, {z(u)}") of
the ” convective” and ” sluﬁmg” D¢, D, : K {z(u)} = K, {z(u)}
derivations, respectively, generated by the general ideal (4.1) in
KC,{z(u)} for arbitrary n,m € N.




5. CONCLUSION.

We presented a short review of new approaches to studying
finitely-generated differential ideals related to some differential-
algebraic constraints and invariant with respect to specially con-
structed derivations in functional rings, satisfying some Lie-algebraic
relationships. In particular. we have succeeded in constructing
endomorphic representations of these derivations, equivalent to a
kind of the Lax type representation. reducing to some differential-
algebraic relationships on a generating function. We have also re-



algebraic relationships on a generating function. We have also re-
formulated using the differential-algebraic terms the well known
Dubrovin's integrability criterion of the classical Riemann equa-
tions, perturbed by means of some special elements from a suit-
ably constructed differential ring, and shown that this criterion
1s firmly based on the differential properties of the correspond-
ing common set of constants, generated by the suitably defined
derivations.



Thanks for your attention!
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