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Abstract. We analyze �nitely-generated by some di¤erntial-algebraic relationships di¤eren-
tial ideals in functional rings, invariant with respect some specially constructed derivations
and satisfying the corresponding Lie-algebraic relationships. Taking into account the �nite-
dimensionality of these ideals, we construct the suitably de�ned homomorphic Lax type rep-
resentations of these derivations, which in some cases are reduced to constraints equivalent to
di¤erential-algebraic relationships on a generating function. The work in part generalizes the
results devised before for proving integrability of the well known generalized hierarrchy of the
Riemann type equations. We have also reformulated by means of the di¤erential-algebraic terms
the well known Dubrovin�s integrability criterion of the classical Riemann equations, perturbed
by means of some special terms from a suitably constructed di¤erential ring.

1. Introduction

We begin with the functional ring K := C1(R� R;R) of real-valued smooth functions on
the spatial-temporal plane R� R and constructing the corresponding di¤erential polynomial ring
Kfug := K[�u] with respect to an arbitrarily yet �xed functional variable u 2 K; where � is
the standard monoid of commuting to each other "shifting" derivations @=@x and @=@t: The ideal
Ifug � Kfug is called di¤erential if Ifug = �Ifug: On the invariant di¤erential ring Kfug one
can construct naturally another "convective" functional derivation Dt := @=@t+u@=@x; satisfying
jointly with the "shifting" derivation Dx := @=@x the Lie-commutator relationship

(1.1) [Dt; Dx] = � (Dxu)Dx:

Then one can pose the following inverse problem:

Problem 1.1. To describe the possible linear endomorphic representations Dx ! l(u) : KfugN !
KfugN and Dt ! p(u) : KfugN ! KfugN of the derivations Dx and Dt : Kfug ! Kfug;
respectively, satisfying the related di¤erential-matrix relationship

(1.2) Dt � l(u)�Dx � p(u) = � (Dxu) l(u);

imitating the Lie-commutator relationship (1.1) on suitably related vector spaces KfugN ; N 2 N:

It is easy to get convinced that for an arbitrarily chosen element u 2 K there exists the
unique linear endomorphic representation of the derivations Dx ! l(u) : KfugN ! KfugN and
Dt ! p(u) : KfugN ! KfugN ; satisfying the di¤erential-algebraic relationship (1.2) on the �nite
dimensional vector spaces KfugN ; N 2 N; and coinciding tautologically with the functional "con-
vective" and "shifting" derivations Dt := @=@t+u@=@x andDx := @=@x; respectively. Nonetheless,
if some additional di¤erential-algebraic constraints are imposed on an element u 2 K; the Problem
1.1 becomes not trivial and solvable, as it was before demonstrated in [7, 8, 9, 10, 11], where there
were constructed linear �nite-dimensional matrix representations of the Lie-commutator relation-
ship (1.1) in the naturally related functional vector spaces KfugN for the corresponding dimensions
N 2 N: To make the approach, devised previously in [9] for constructing such �nite-dimensional
representations of the Lie-commutator relationship (1.1), more elaborated and practically feasible,
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we consider below in detail a new interesting enough di¤erential-algebraic scheme, ensuing from
the di¤erential Riemann type relationship

(1.3) Dn
t z(u) := (@=@t+ u(x; t)@=@x)

n
z(u) = 0;

imposed on an element z(u)(x; t) 2 K for n 2 N and an arbitrary u 2 K; which makes it
possible to proceed from the ring Kfug to the Liouville type extended ring Knfz(u)g; n 2 N;
generated by elements

(1.4) fz(u); Dtz(u); :::; Dn�1
t z(u) 2 Kfug : Dn

t z(u) = 0; u 2 Kg

and to pose the following slightly modi�ed inverse problem 1.1:

Problem 1.2. To describe the possible linear �nite dimensional representations of the derivations
Dx; Dt : Knfz(u)g ! Knfz(u)g; n 2 N; satisfying the related homomorphic di¤erential-algebraic
relationship (1.2) in the functional vector spaces Knfz(u)gm+n for some suitably chosen m 2 N:

It is worth to remark here that the ring Knfz(u)g can be considered as a coordinate set of an
in�nite dimensional manifold, and the Lie algebra of its derivations as the Lie algebra of vector
�elds of this manifold. Moreover, the devised below scheme of constructing �nite-dimensional
endomorphic representations of the Lie-commutator relationship (1.1), being in much motivated
by the previous results, is strongly based on the suitably constructed �nite-dimensional di¤erential
ideals I(�)n;mfz(u)g � Knfz(u)g; u 2 K; parameterized by real numbers � 2 Rnf0g; and their
invariance properties subject to the "convective" derivation Dt : Knfz(u)g ! Knfz(u)g; N 2 N:
In particular, at n = ;; m = 2 and � = 1=2 we have stated a theorem, describing the corre-

sponding di¤erential-algebraic constraint on a �xed function u 2 K and providing the related
linear �nite-dimensional endomorphic representations Dx ! l(u) : K1fz(u)g2 ! K1fz(u)g2; Dt !
p(u) : K1fz(u)g2 ! K1fz(u)g2 of our derivations Dt; Dx : K1fz(u)g ! K1fz(u)g; satisfying the
di¤erential - matrix relationship (1.2), imitating that of (1.1) in the two-dimensional functional
vector spaces K1fz(u)g2; and which can be rewritten in the following classical matrix commutator
form:

(1.5) Dtl[u] + uxl[u] = [p(u); l(u)] +Dxp(u):

Theorem 1.3. Let a function u 2 K satisfy the following di¤erential relationship:

(1.6) DxDtu+ (Dxu)
2 �D3

xu = 0:

Then the following linear matrix endomorphisms

(1.7) l(u) =

�
0 1

1=2Dxu 0

�
; p(u) =

�
1=2Dxu 0
1=2D2

xu �1=2Dxu

�
on the functional vector spaces K1fz(u)g2 solve the related di¤erential-matrix relationship (1.2).

This result is naturally generalized on the case of arbitrary n 2 N and formulated as the next
theorem.

Theorem 1.4. The di¤erential-algebraic relationship Dn
t z(u) = 0; n 2 N; is equivalent to

the di¤erential-matrix relationship (??) for any element u 2 K and a parameter � 2 R with
the homomorphic matrix represenations Dt ! p(u;�) 2 End(Knfz(u)gn); Dx ! l(u;�) 2
End(Knfz(u)gn) of the "convective" and "shifting" Dt; Dx : Knfz(u)g ! Knfz(u)g derivations,
respectively, given by the matrix expressions (1.8) and (1.9):

(1.8) p(u;�) =

0BBBB@
0 0 ::: 0 0
�� 0 ::: 0 0
::: �� ::: 0 0
0 0 ::: 0 0
0 0 ::: �� 0

1CCCCA
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and
(1.9)

l(u;�) =

0BBBB@
�DxD

n�2
t z(u) DxD

n�1
t z(u) ::: 0 0

0 �DxD
n�2
t z(u) ::: 0 0

::: ::: ::: (n� 2)DxDn�1
t z(u) 0

0 0 ::: �DxD
n�2
t z(u) (n� 1)DxDn�1

t z(u)

�n�n �n�n�1z(u) ::: �n�2DxDn�3
t z(u) �(1� n)DxDn�2

t z(u)

1CCCCA :
We have also considered the Dubrovin�s integrability classi�cation [26, 27, 28] of a general

evolution equation

ut + f(u)ux = "[f21(u)uxx + f22(u)u
2
x] +(1.10)

+"2[f31(u)uxxx + f32(u)uxuxx + f33u
3
x] + :::+

+"N�1[fN;�(u)
Y

m=1;N

(ujx)
kj + :::] := FN;"(u);

with graded homogeneous polynomials of the jest-variables fux; uxx; :::; ukx:::g 2 J1(R;R); where
f 0(u) 6= 0 for arbitrary u 2 K := C1(R;R); and consisting in describing the set F of smooth
functions fj;�(u); � := fkj 2 N :

P
j=1;N jkj = Ng; with a �xed natural integer N 2 N; for which

the equation (1.10) reduces by means of the following transformation

(1.11) v ! u+
X
k2N

"k�k(u; ux; uxx; :::; u
(mk)) 2 exp (A"(u))

with �nite orders mk 2 N; k 2 N; being applied to an arbitrary Riemann type symmetry �ow

(1.12) vs + h(v)vx = 0

with respect to an evolution parameter s 2 R; reduces to the form

(1.13) us + h(u)ux =
X
k2N

"khk(u; x; uxx; :::; u
(k)) := H"(u) 2 A"(u);

where A"(u) is a specially de�ned di¤erential ring, depending on a chosen element u 2 K and a free
parameter ": Having reformulated the Dubrovin�s integrability criterion within the corresponding
di¤erential-algebraic tools, based on the basic "convexity" derivations D(v)

s := @=@s+ v@=@x and
D
(h(v))
s := @=@s+h(v)@=@x with the common �eld of constants Z(v) for any v 2 K; we successfully

rederived this criterion.
The obtained results in some sense generalize the ones, obtained before in the works [10, 11],

devoted to proving the Lax type integrability [5, 23, 24, 25] of a generalized Riemann type
hierarchy of di¤erential-algebraic relationships Dn

t u = 0 for u 2 K and natural n 2 N:
An interesting problem and not analyzed here is to construct nontrivial �nite-dimensional ho-

momorphic representations Dt ! p(u;�) 2 End(Knfz(u)gn); Dx ! l(u;�) 2 End(Knfz(u)gn)
of the "convective" and "shifting" Dt; Dx : Knfz(u)g ! Knfz(u)g derivations, respectively,
generated by f the general ideal (??) in Knfz(u)g for arbitrary n;m 2 N:
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