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Symplectic structures of di�erential equations are similar to sym-

plectic structures in Hamiltonian mechanics. They can be described

in terms of variational analogs of di�erential 2-forms and in terms

of equivalence classes of linear di�erential operators in total deriva-

tives. Such operators are de�ned on in�nite extensions of di�erential

equations and they are allowed to be degenerate.

The well-known inverse problem of the calculus of variations can

also be formulated in terms of linear di�erential operators in total

derivatives. However, in this case such operators are de�ned on jets.

Beside this, they must be nondegenerate in some sense. Fortunately,

their restrictions to the corresponding di�erential equations are al-

ways related to symplectic structures.



Let ξ : E → X be a locally trivial smooth vector bundle over a

smooth manifold X ,

dimX = n − 1 , dimE = n − 1 + m .

Denote M = X × R, N = E × R. Consider the projection to the

�rst multiplier

prX : X × R→ X

and denote

π = prX
∗(ξ) .

Let κ(π) = Γ(π∗∞(π)) be the module of sections of the corresponding

induced bundle.



Choose local coordinates x1, . . . , xn−1 on X and u1, . . . , um along

the �bers of ξ. Choose a global coordinate t = xn on R. Then

x1, . . . , xn are local coordinates on M.

Let α = (α1, . . . , αn) be a multi-index. Here all αi are non-

negative integers. Denote by αx the formal sum:

αx = α1x
1 + . . .+ αnx

n = αix
i .

Put |α| =
∑

i αi ,

Dαx = Dx1
α1 ◦ . . . ◦ Dxn

αn , uiαx = Dαx(ui ).

Here Dx i are operators of total derivatives, D0 is the identity opera-

tor. Further we consider only adapted local coordinates on J∞(π),

i.e. local coordinates of the form x1, ..., xn−1, t = xn, ujαx .



Let b be a vector b = (b1, . . . , bm), where all bi are positive

integers. Further we assume that either b1 = . . . = bm, or a bundle

ξ has a trivial structure group.

Let ϕ ∈ κ(π) be such a section, that its components ϕi depend

on x j , t and coordinates of the form ukαx , for which holds αn < bk .

Then a system of equations

u1b1t = ϕ1 ,

. . . ,

umbmt = ϕm

is written in an extended Kovalevskaya form. We assume that section

F = ubt − ϕ determines smooth submanifold {F = 0} ⊂ JK (π),

where K is a maximal order of derivatives in F .



Let E be the in�nite extension of the system of equations ubt = ϕ

E : Dαx(uibi t) = Dαx(ϕi ) for all α and i = 1, . . . ,m . (1)

Further we consider only systems of equations of the form (1).

By external with respect to E coordinates on J∞(π) we will mean

local coordinates on the left-hand side of equations from E . Other

local coordinates on J∞(π) are internal with respect to E .



Consider a projection prM : M × R → M and the induced bundle

π′ = pr∗M(π). Denote M ′ = M × R, N ′ = N × R. Here dimM ′ =

n + 1. Let a be a global coordinate on R.

Denote k-jet of a section h′ ∈ Γ(π′) at a point (x , a) ∈ M ×R by

[h′]k(x ,a). De�ne maps

fk : Jk(π′)→ Jk(π) , gk : π′
∗
k(N ′)→ π∗k(N)

in the following way:

fk([h′]k(x ,a)) = [prN ◦ h′ ◦ 0M ]kx , gk(p′, q′) = (fk(p′), prN(q′)) .

Here 0M is a zero-section of the bundle prM , (p′, q′) ∈ π′∗k (N ′) ⊂
Jk(π′)× N ′.

Put

f = f∞ , g = g∞ .



De�ne a map f ′ : κ(π) → κ(π′) in the following way: for each

section v ∈ κ(π) there exists a unique section v ′ ∈ κ(π′), such that

v ◦ f = g ◦ v ′.

Then put f ′(v) = v ′.

Denote f ′(F ) by F ′, an in�nite extension of a system of equations

f ′(ubt) = f ′(ϕ) by E ′.

Remark 1. A system of equations f ′(ubt) = f ′(ϕ) also has an

extended Kovalevskaya form.

Since Da(F ′) = lF ′(u
′
a), then a system of equations E ′ is similar to

the tangent covering of E . Here coordinates u′ia play role of �ber-wise

coordinates qi from the tangent covering

F = 0 , lF (q) = 0 .



Denote by fΛ a homomorphism from Λn
h(π) to Λn+1

h (π′), which is

induced by the map

ω 7→ da ∧ f ∗(ω) .

Let A : κ(π)→ κ̂(π) be a C-di�erential operator. Denote by A′ a
unique C-di�erential operator A′ : κ(π′)→ κ̂(π′), such that for any

λ, µ ∈ κ(π) holds

fΛ(〈A(λ), µ〉) = 〈A′(f ′(λ)), f ′(µ)〉 .

Here 〈·, ·〉 is the natural pairing between the module and its adjoint.

Then A′∗ = (A∗)′.

For any G ∈ κ̂(π) also de�ne G ′ ∈ κ̂(π′) from the identity

fΛ(〈G , λ〉) = 〈G ′, f ′(λ)〉 .



Further we use notations x ′i , a, u′j for local coordinates on N ′.

Functions u′ia determine a section u′a ∈ κ(π′). In local coordinates

functions ϕi and ϕ′i = f ′(ϕ)i are identically equal up to primes of

arguments.

In local coordinates for a C-di�erential operator A : κ(π)→ κ̂(π)

and any λ, µ ∈ κ(π) holds

〈A(λ), µ〉 = AαijDαx(λi )µjdx1 ∧ . . . ∧ dxn .

Then for A′ and any λ1, µ1 ∈ κ(π′) holds

〈A′(λ1), µ1〉 = A′αij Dαx ′(λ
i
1)µj

1
da ∧ dx ′1 ∧ . . . ∧ dx ′n .

Here for all i , j , α corresponding functions Aαij and A′αij are identically

equal up to primes of arguments.



Let ∆: κ(E)→ κ̂(E) be a C-di�erential operator, such that

∆∗ ◦ lE = l ∗E ◦∆ .

One can consider an equivalence class of ∆ modulo operators of the

form � ◦ lE , where � = �∗.

A group of symplectic structures of a system of equations E con-

sists of equivalence classes of operators, which are related to closed

variational 2-forms.

De�nition 1. A C-di�erential operator A∗ : κ(π) → κ̂(π) is said

to be a variational operator for a system of equations F = 0 (or,

equivalently, for its in�nite extension E), if for some Lagrangian L

holds A∗(F ) = E(L).



By a variational extension of an operator ∆: κ(E) → κ̂(E) we

will mean such an operator A : κ(π)→ κ̂(π), that A|E = ∆ and A∗

is a variational operator for E .

De�nition 2. A symplectic structure of E is extendable to jets (or

just extendable), if it is generated by some operator ∆, which admits

some variational extension A.

An operator A from this de�nition is also an extension of the corre-

sponding symplectic structure.

We will say, that an extension A of a symplectic structure of E (or a

variational operator A∗) is nondegenerate, if the system of equations

A∗(F ) = 0 has the di�erential consequence F = 0. Then for some

C-di�erential operator B : κ̂(π)→ κ(π) holds F = B(A∗(F )).



Example 1. Consider a one-dimensional shallow-water equations

over uneven bottom in Euler's variables (SWE)

ut + uux + ρx = h′(x) ,

ρt + uxρ+ uρx = 0 .

One can introduce a nonlocal variable w by the relations

wx = −u ,

wt =
u2

2
+ ρ− h(x)

and consider the equation for potential w = w(x , t) (SWP)

wtt − 2wxwxt +
(3
2
w2

x − wt − h(x)
)
wxx − h′(x)wx = 0 .

It admits a variational operator A∗P = 1.



One can also introduce a Lagrange's mass variable m by the rela-

tions
mx = ρ ,

mt = −uρ

and consider the shallow water equation in Lagrange's variables for

m = m(x , t) (SWL)

mtt −
2mtmtx

mx
+
(m2

t

m2
x

−mx

)
mxx + h′(x)mx = 0 .

This equation admits a variational operator A∗L = m−1x .



Using both mentioned conservation laws, we obtain a B�acklund

transformation (SWPL) of the equations SWP and SWL :

mt = mxwx ,

wt =
w2
x

2
+ mx − h(x) .

The lifts of the obtained symplectic structures to SWPL coincide

and are generated by the operator

∆PL =

(
0 −Dx

−Dx 0

)
.

Then consider the operator

APL =

(
0 −Dx

−Dx 0

)
.

The operator A∗PL is a (degenerate) variational operator for SWPL.



Example 2. Consider a trivial bundle π : R5 → R2. Let x and t be

global coordinates on a plane R2, u, v and w be coordinates along

the �bers of π over R2.

Let L be a function, which depends on a �nite number of argu-

ments of the form x , t, u, ux , uxx , uxxx , . . . Denote E(L) by h, then

lh = l ∗h . Consider the following system of equations in an extended

Kovalevskaya form
utt = w ,

vtt = uxx − vxx + h,

wtt = vxx − h.



Direct calculation shows, that the operator

∆ =

D
2

x 0 1

0 1 1

1 1 1


satis�es the relation

∆∗ ◦ lE = l ∗E ◦∆ .

Consider the operator

A∗ =

D 2
x 0 1

0 1 1

1 1 1

 .



The operator A∗ is a variational operator for the system of equations

under consideration. The corresponding Lagrangian for A∗(F ) has

the form

L = L+
u2xt
2

+ uxvx + uxwx − utwt −
v2t
2
− vtwt −

w2
t

2
− w2

2
.

Therefore ∆ generates an extendable symplectic structure.

The operator A∗ is a two-sided invertible C-di�erential operator,
which inversion is the operator

(A∗)−1 =

 0 −1 1

−1 1− D 2
x D 2

x

1 D 2
x −D 2

x


Thus, system of equations A∗(F ) = 0 has the consequence F = 0

and ∆ generates an extendable symplectic structure with nondegen-

erate extension.



De�ne an operation

sE ′ : CDi�(κ(π), κ̂(π))→ CDi�(κ(π′), κ̂(π′))

as follows. Let A : κ(π)→ κ̂(π) be a C-di�erential operator. Com-

ponents of

A′(u′a)|E ′

can be considered as components of a unique element σ ∈ κ̂(π′).

Since components of σ are linear in total derivatives of u′ia , then for

a unique C-di�erential operator σ̃ : κ(π′)→ κ̂(π′) holds σ = σ̃(u′a).

Put

sE ′(A) = σ̃ .



Secondly de�ne an operation

SE : CDi�(κ(π), κ̂(π))→ CDi�(κ(π), κ̂(π))

as follows. Using local coordinates, it's easy to verify, that for a

C-di�erential operator A : κ(π) → κ̂(π) there exists a unique C-
di�erential operator B : κ(π)→ κ̂(π) of the form

〈B(λ), µ〉 = Bαij Dαx(λi )µjdx1∧. . .∧dxn, Bαij 6= 0 only if αn < bi ,

such that holds

B ′ = sE ′(A) .

Here components Bαij depend on internal with respect to E coordi-

nates only. Put

SE(A) = B .

Therefore, (SE(A))′ = sE ′(A).



Remark 2. For some C-di�erential operators B1 ∈ κ(π) → κ̂(π),

B2 : κ(π)→ CDi�(κ(π), κ̂(π)) holds

A′(u′a)− sE ′(A)(u′a) = B ′1(Da(F ′)) + B ′2(F ′)(u′a) .

Since

Da(F ′) = lF ′(u
′
a) ,

then also holds the relation

A− SE(A) = B1 ◦ lF + B2(F ) .

Hence

A|E − SE(A)|E = B1|E ◦ lE .

Thirdly de�ne an operation of a naive extension. Denote it by

eJ : CDi�(κ(E), κ̂(E))→ CDi�(κ(π), κ̂(π)) .



Let G be an element of the module κ̂(π), then holds a criterion

lG = l ∗G ⇔ ∃ω ∈ Λn
h(π′) : 〈G ′, u′a〉 = dhω . (2)

For any C-di�erential operator A : κ(π)→ κ̂(π) holds

(A∗(F ))′ = A′∗(F ′) .

Then (2) can be generalized in the following way: put G = A∗(F )

in (2); using Green formula, one can obtain, that

lA∗(F ) = l ∗A∗(F ) ⇔ ∃ω ∈ Λn
h(π′) : 〈A′(u′a),F ′〉 = dhω



The criterion (2) can be rewritten in the form

G ∈ ImE ⇔ ∃ω ∈ Λn
h(π′) : 〈u′a,G ′〉 = dhω .

It is related to a Noether identity on J∞(π)

〈q,E(L)〉 = Eq(L) + dhw .

Here Eq is an evolution vector �eld, w is some horizontal (n−1)-form.



Recall, that if a conservation law of the system of equations E ′ has
some global characteristic, then it also has a global characteristic,

which components depend on internal with respect to E ′ coordinates
only, therefore

lA∗(F ) = l ∗A∗(F ) ⇒ ∃ω ∈ Λn
h(π′) : 〈sE ′(A)(u′a),F ′〉 = dhω ⇒

⇒ lSE(A)∗(F ) = l ∗SE(A)∗(F ) .

Thus, we obtain the following theorem.

Theorem 1. I f A∗ is a variational operator for a system of equations

E in an extended Kovalevskaya form, then SE(A)∗ is also a variational

operator for E .



Corollary 1. A C-di�erential operator ∆: κ(E)→ κ̂(E) of the form

〈∆(λ), µ〉 = ∆α
ijDαx(λi )µjdx1∧. . .∧dxn, ∆α

ij 6= 0 only if αn < bi
(3)

generates an extendable symplectic structure of E if and only if it

satis�es the system of equations

leJ(∆)∗(F ) = l ∗eJ(∆)∗(F ) (4)

Corollary 2. Each extendable symplectic structure of a system of

equations E in an extended Kovalevskaya form is generated by some

operator of the form (3).



The following proposition shows that one can obtain extensions of

a trivial symplectic structure, using Lagrangians of a special form.

Proposition 1. Let E be a system of equations in an extended Ko-

valevskaya form and ∇ : κ(π) → κ̂(π) be a C-di�erential operator.
Then for some extension Ã of a trivial symplectic structure holds

Ã∗(F ) = E(〈∇(F ),F 〉) .

However, in the context of the inverse problem of the calculus of

variations it's important to �nd nondegenerate extensions of extend-

able symplectic structures (if it's possible).



Let A∗ be a nondegenerate variational operator for a system of

equations F = 0. Denote

∆ = SE(A)|E .

For some C-di�erential operator B : κ̂(π)→ κ(π) holds

F = B(A∗(F ))

and hence

lE = B|E ◦ A∗|E ◦ lE .

System of equations E is l -normal, then we obtain the relation

B|E ◦ A∗|E = idκ(E) . (5)

Since the operator A|E generates a symplectic structure for E , then
there exists some self-adjoint C-di�erential operator �, such that

holds A|E = ∆ + � ◦ lE .



Thus, we obtain the following relation for ∇ = B|E

∇ ◦ (∆∗ + l ∗E ◦�) = idκ(E) (6)

and hence

∇ ◦ (∆∗ + l ∗E ◦�) ◦ lE ◦ ∇∗ = lE ◦ ∇∗.

Operator on the left-hand side is self-adjoint, then lE ◦∇∗ = ∇◦ l ∗E .
From (6) it also follows that

(∆ + � ◦ lE) ◦ ∇∗ = idκ̂(E) ,

then

∆ ◦ ∇∗ + � ◦ ∇ ◦ l ∗E = idκ̂(E) . (7)

The lift of the relation (7) to the cotangent covering becomes

∆̃(∇̃∗(p)) = p .



Components of the homomorphism ∇̃∗(p) are linear in p and its

derivatives. Then for some C-di�erential operator ζ : κ̂(E) → κ(E)

of the form

〈χ, ζ(ψ)〉 = ζα ijDαx(ψi )χj dx
1∧. . .∧dxn, ζα ij 6= 0 only if αn < bi

holds ∇̃∗(p) = ζ̃(p) and hence

∆̃(ζ̃(p)) = p . (8)

Thus, we obtained a necessary condition (8) for a symplectic struc-

ture to have a nondegenerate extension.



Now assume additionally, that the initial system of equations

F = 0

is a system of evolution equations. Then the relation ∆̃(ζ̃(p)) = p

implies the relation

eJ(∆) ◦ eJ(ζ) = idκ̂(π)

and hence

eJ(ζ∗) ◦ eJ(∆∗) = idκ(π) . (9)

Since ∆ is a skew-adjoint operator: ∆∗ = −∆, then one can rewrite

the relation (9) in the form

eJ(−ζ∗) ◦ eJ(∆) = idκ(π) .

Therefore, we obtain the following theorem



Theorem 2. Let A∗ be a nondegenerate variational operator for

a system of evolution equations E . Then SE(A)∗ is a two-sided

invertible variational operator for E with a C-di�erential inversion.

Thus, symplectic structures with nondegenerate extensions for a sys-

tem of evolution equations E are completely characterized by two-

sided invertible C-di�erential operators of the form

〈∆(λ), µ〉 = ∆α
ijDαx(λi )µjdx1∧. . .∧dxn, ∆α

ij 6= 0 only if αn < bi

which satisfy the system of equations

leJ(∆)∗(F ) = l ∗eJ(∆)∗(F ) .



If F = 0 is a scalar equation in an extended Kovalevskaya form, then

for composition of any C-di�erential operators ∆: κ(E)→ κ̂(E) and

∇ : κ̂(E)→ κ(E) holds

ord (∆ ◦ ∇) = ord (∆) + ord (∇) .

Hence, in this case we obtain from the relation

B|E ◦ A∗|E = idκ(E) ,

that for each nondegenerate variational operator A∗ holds

ordA∗|E = 0 .

Therefore, SE(A)∗ = eJ(A|E)∗ is a zero order nondegenerate varia-

tional operator for E (i.e. variational multiplier). Here a component

of SE(A)∗ depends on internal with respect to E coordinates only.

Thus, if a scalar equation in an extended Kovalevskaya form admits

a variational formulation, than b is even number. In this case each

symplectic structure with nondegenerate extension has a zero order

nondegenerate extension.



Application of the result of M. Alonso to prime systems led to a

complete description of extendable symplectic structures for systems

of equations in an extended Kovalevskaya form. Beside this, the ob-

tained results allowed to describe all extendable symplectic structures

with nondegenerate extensions for systems of evolution equations.

The obtained description is related to the problem of constructing

for a given C-di�erential operator its C-di�erential inversion. How-

ever, in general a calculation of extendable symplectic structures of

all orders for a system of equations in an extended Kovalevskaya form

is a non-trivial problem by itself.
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